
Contents
1 Extending Stackdb 1

1.1 Code Structure . 1
1.2 Target Lifecycle . 2
1.3 Overlay Targets . 2
1.4 Symbols . 2
1.5 Current Drivers . 2
1.6 Writing a Driver . 2
1.7 Writing a Personality . 2

1 Extending Stackdb

Hopefully, you’ll have arrived at this section because you want to extend Stackdb’s
platform support. If you hoped to get advice on how to improve its design,
unfortunately this won’t be much help to you.

1.1 Code Structure

Here’s a quick overview of the source tree:

• include/ – common Stackdb header files: data structures, architecture
support, utility functions and structures

• lib/ – implementations of the header files in include/
• dwdebug/ – DWARF debuginfo and ELF support for reading binary files,

and extracting and indexing debugging data, including symbols, types,
addresses/locations, source file/line information, stack-unwinding data, etc;
provides fast lookups and optimized file loading and indexing; supports
C/C++ (and its data structures suffice to describe the core of languages
like Python, PERL, PHP, and the like – but some constructs of higher-level
languages might be harder to “fit” into the dwdebug abstractions, since
they were designed with C language features in mind.

• target/ – the core of Stackdb: the target abstraction and its common
code (targets, threads, addrspaces, regions, ranges, bsymbols, etc); drivers;
personalities

• analysis/ – supports Stackdb analyses (at one point, we envisioned Stackdb-
based programs and libraries as analyses; this is first-class support for the
metadata that describes those programs)

• xml/schema/ – XML schema describing debuginfo and target data struc-
tures

• xml/service/ – WSDL and SOAP web services; exports three categories of
Stackdb functions (dwdebug; target; and analysis) as web services

• xml/client/ – SOAP client support; Apache Axis 2.x-based Java client libs
and example programs; Python sample clients.

1

• tools/ – several basic tools, written using Stackdb, that can be applied to
any target (i.e., dumpdebuginfo, backtrace, dumptarget, dumpthreads, spf,
cfi_check, rop_checkret)

1.2 Target Lifecycle

1.3 Overlay Targets

1.4 Symbols

Probably what you’re curious about is, why are there three different data struc-
tures describing symbols? struct symbol and struct lsymbol in dwdebug/,
and struct bsymbol in target/. First, we desired to provide first-class support
for looking up symbol expressions, not just individual symbols. It’s much easier
for the user to look up an expression like “init_task.mm.mm_count”, instead of
the individual members and/or typed pointers that make up the chain – and
given this chain (an lsymbol), the user can ask the to lookup a bsymbol (a
“bound” symbol – bound to a target region, because the debugfile in which the
symbol was found is associated with a specific memory region) – and then to
load it. In other words, the target library can load symbol expressions, not just
individual symbols. This is quite convenient.

Unfortunately, it complicates the API. The target API (bsymbols) essentially
wraps the dwdebug API (symbols and lsymbols) functions.

Finally, symbols are reference counted. This is necessary because of optimizations
in the dwdebug/ library that strive to remove duplicate debuginfo data (there
can be a lot of it!). Users are never exposed to symbols that might be deleted;
the reference counting is primarily used to guard symbols while the loading
algorithms are running and conducting space-saving optimizations.

This means when users lookup a symbol, they must release it via bsym-
bol_release(), lsymbol_release(), or symbol_release(). Unfortunate, but that’s
how it has to be to enable the optimizations.

1.5 Current Drivers

1.6 Writing a Driver

1.7 Writing a Personality

2

	Extending Stackdb
	Code Structure
	Target Lifecycle
	Overlay Targets
	Symbols
	Current Drivers
	Writing a Driver
	Writing a Personality

