Contents

1 Stackdb: A C Library for “Stackable” Debugging and Virtual

Machine Introspection 5
1.1 Supported Platforms o oL 6
1.2 Obtaining the Software 6
1.3 Additional Documentation 6
1.4 Authors 7
2 Installing Stackdb 9
2.1 Dependencies 9
2.1.1 Optional Packages 10

2.2 Notes on Building Dependencies 10
2.3 Building and Installing Stackdb 12
3 Using Stackdb 15
3.1 Quick Start 15
3.2 Understanding the Concept and Features 15
3.3 How to Run Stackdb Programs 16
3.4 Standard Stackdb Program Arguments 16
3.4.1 Specifying Multiple Targets 17
3.4.2 Improving Debuginfo Loading Times 18
3.4.3 Debuginfo Search Path 18
3.4.4 Active Probing L. 19
3.4.5 Standard Debugging Arguments 19

3.5 Supported Platforms o000 21
3.5.1 Drivers 21
3.5.2 Linux Userspace Process (Ptrace) Driver 21
3.5.3 Xen Driver 22
3.5.4 GDB/QEMU/KVM Driver 24
3.541 QEMUGDBHelper 24

3.5.42 QEMU/KVM Configuration 25

3.5.4.3 Manually Running QEMU/KVM 25

3.5.4.4 Using Libvirt to Run QEMU/KVM 26

3.5.4.5 Using Eucalyptus to Run QEMU/KVM 28

3.5.4.6 Using OpenStack to Run QEMU/KVM 29

1

2 CONTENTS

3.5.5 OS Process Driver 30
356 PHPDriver 30
3.5.7 Personalities L 30
3.5.7.1 “Generic” Linux OS Personality 30

3.6 Supported Configurations 30
3.7 Working with Debuginfo 31
3.7.1 Installing Debuginfo Packages on Ubuntu Systems 33
3.7.2 Installing Debuginfo Packages on Fedora/CentOS Systems 33

3.8 Stackdb Tools 33
3.8.1 dumpdebuginfo oo 34
3.8.2 dumptarget 40
3.8.3 probetargets Lo 40
3.84 dumpthreads L. 41
3.8.5 backtrace L 41
3.8.6 spf . .. 41
3.87 syscall 41
3.8.8 cfi check 41
3.8.9 rop_checkret Lo 41

3.9 Examples and Demoso 41
3.9.1 Preparing Your System 42
392 KVMdemos 42
3.93 Ptracedemos Lo 43

3.10 Writing Stackdb Programs in C 44
3.10.1 Library Overview oo v i 45
3.10.2 Integrating Stackdb Into Your Program: “Running” Stackdb 45
3.10.2.1 Monitoring One Target: target_monitor() . . 46

3.10.2.2 Monitoring Multiple Targets: target_monitor_evloop() 46
3.10.2.3 Monitoring Multiple = Targets (polling):

target_poll() 47
3.10.2.4 Manually Handling One or More Targets:
evloop_run() 47
3.10.2.5 Signals L 47
3.10.2.6 Forking oL 48
3.10.3 Targets Lo 48
3.10.3.1 CPU State: Threads and Registers 48
3.10.3.2 Memory: Address Spaces, Regions, Ranges . . . 49
3.11 Overlay Targets« .o v v i it 49
3.11.1 Exampleso 49
3.11.1.1 Example 1: Placing a Breakpoint in a Userspace
Process L 49
3.11.1.2 Example 3: Finding Unique Control Flows in the
Linux Kernel 49
3112 CAPL 50
3.12 Writing Stackdb Programs in Python. 50

4 Extending Stackdb 51

CONTENTS 3

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Code Structure L 51
Target Lifecycle 52
Overlay Targets 52
Symbols 52
Current Drivers o 53
Writing a Driver L oo 53
Writing a Personality 53

CONTENTS

Chapter 1

Stackdb: A C Library for
“Stackable” Debugging and
Virtual Machine
Introspection

Stackdb is a C library that allows a user to write programs to debug, inspect,
modify, and analyze the behavior of other running programs — from virtual
machines (Xen, KVM/QEMU) to Linux userspace programs (via ptrace(2)).
This means Stackdb can be used to debug programs running on your desktop
machine; or it can be used to debug virtual machines and the programs running
inside them!

Stackdb is useful both as a featureful debugger, and as a tool for Virtual Ma-
chine Introspection (i.e., memory forensics, execution monitoring). It supports
breakpoints, watchpoints, stack unwinding, multi-threaded program debugging,
debugging symbol information (via ELF and DWARF), and C and C++ pro-
grams. It supports multi-target analysis — meaning your Stackdb program can
attach to or spawn multiple target programs (of different types, if desired), and
cooperatively analyze or monitor their behavior.

However, Stackdb’s defining feature is its ability to create stacks of debugging
targets. This means that Stackdb drivers (which allow you, the user, to attach
to a running program and debug it) can be stacked, allowing you to attach to
and debug a program running in another program! For instance, using Stackdb,
you can attach to a Xen virtual machine and the Linux kernel running inside it
(the base target); and subsequently attach to a userspace process running inside
that VM (an overlay target). Stackdb’s user API functions can be applied to all
targets. Thus, you can insert a breakpoint on the sys_open system call function

5

6CHAPTER 1. STACKDB: A C LIBRARY FOR “STACKABLE” DEBUGGING AND VIRTUAL MAC

in the Linux kernel in your base target, and another on the make_child function
in a bash process running in userspace (your overlay target).

1.1 Supported Platforms

Stackdb builds and runs on Linux. Its base drivers allow you to attach to the
following targets: Xen VMs, KVM/QEMU VMs, Linux userspace processes. It
provides one personality (Stackdb’s abstraction for enhancing its model of the
running target), a generic Linux personality supporting kernels from 2.6.18 to
3.8.x (and possibly higher). You'll want to attach the “Linux” personality to any
Xen or KVM VM that is running a Linux kernel). Its overlay drivers allow you
to attach to OS Processes (i.e., you can attach to any userspace process running
in a base target whose driver and/or personality supports Stackdb’s Process
abstraction — this is one kind of stack of targets you can create. Another overlay
driver, the PHP driver, allows you to stack a PHP target atop a process target
and place probes on PHP function symbols. This means the following stacks are
possible:

e Xen VM + Linux Personality -> OS Process -> PHP
« KVM/QEMU VM + Linux Personality -> OS Process -> PHP
e ptrace -> PHP

and of course, you can use partial stacks of targets, or no stack at all, if you
simply want to inspect a Xen VM.

Finally, Stackdb supports x86 and x86_64 architectures. Your Stackdb program
and target program must be the same architecture; at present we do not support
x86_64 analysis of an x86 VM, for instance. Stackdb is a research project,
first and foremost; sadly, we have not been able to find time to support all the
desirable features of full architecture abstraction.

1.2 Obtaining the Software

You can obtain Stackdb at https://gitlab.flux.utah.edu/a3/vmi. You can browse
the source repository at https://gitlab.flux.utah.edu/a3/vmi/tree/master.

1.3 Additional Documentation

You can access the online documentation at http://a3.pages.flux.utah.edu/vmi.

You can also read our detailed paper describing Stackdb’s design and internal
APIs at http://www.flux.utah.edu/paper/johnson-veeld. This paper is a great
introduction to the Stackdb concept and terminology. It is still highly relevant

https://gitlab.flux.utah.edu/a3/vmi
https://gitlab.flux.utah.edu/a3/vmi/tree/master
http://a3.pages.flux.utah.edu/vmi
http://www.flux.utah.edu/paper/johnson-vee14

1.4. AUTHORS 7

and worth reading to understand how the software works — although the APIs
described have since expanded. However, it functions as our “conceptual level”
description of Stackdb.

You can build a local copy of the Stackdb documentation by entering the doc/
subdirectory and typing make. The build requires (at least) doxygen, pandoc,
and pdflatex.

1.4 Authors

Stackdb was written at the University of Utah, in the Flux Research Group, by
David Johnson (johnsond@cs.utah.edu). It originally grew out of an x86, Xen-
based VMI library developed by Chung Hwan Kim (chungkim@cs.purdue.edu)
(still in the source repository in the vmprobes/ subdirectory), but has been
entirely rewritten and significantly expanded into a multi-platform, multi-target,
stackable debugger library. Mike Hibler (hibler@cs.utah.edu), Anton Burtsev
(aburtsev@cs.utah.edu), and Eric Eide (eeide@cs.utah.edu) have also contributed
to aspects of Stackdb.

http://www.utah.edu
http://www.flux.utah.edu
http://www.flux.utah.edu/profile/johnsond
mailto:johnsond@cs.utah.edu
https://www.cs.purdue.edu/homes/chungkim
mailto:chungkim@cs.purdue.edu
http://www.flux.utah.edu/profile/mike
mailto:hibler@cs.utah.edu
http://www.flux.utah.edu/profile/aburtsev
mailto:aburtsev@cs.utah.edu
http://www.flux.utah.edu/profile/eeide
mailto:eeide@cs.utah.edu

8CHAPTER 1. STACKDB: A C LIBRARY FOR “STACKABLE” DEBUGGING AND VIRTUAL MAC

Chapter 2

Installing Stackdb

Currently, you must install Stackdb from source. Stackdb is available via git
at http://git-public.flux.utah.edu/git/a3/vmi.git . Stackdb is only available
for Linux, and for x86/x86_64 architectures. Stackdb itself will likely build
on non-Linux UNIX-like OSes; but first, because it depends on elfutils; and
second, because we have only been interested in applying it to platforms that
are best-supported under Linux (such as Xen and QEMU/KVM), we do not
support other build environments.

2.1 Dependencies

To build Stackdb, your system must have the following packages installed:

e glib >= 2.29;

o elfutils (>= 0.137 should be fine, but ideally you will want something much
newer, such as 0.152; also note that if you use this library on a DWARF
version 4-encoded file, and build against elfutils <= 0.141, many things
will probably break);

e Judy (used for fast data indexing);

o distorm (necessary for x86/x86_64 disassembly, CFI checking, ROP detec-
tion).

On any modern, recently-updated Linux distribution, these packages may be
available in the distribution’s repositories (with the exception of distorm). You
shouldn’t need to build them from source, but we provide instructions below if
you feel the need to do so.

https://git.gnome.org/browse/glib/
https://fedorahosted.org/elfutils/
http://judy.sourceforge.net/
http://code.google.com/p/distorm/

10 CHAPTER 2. INSTALLING STACKDB

2.1.1 Optional Packages

Stackdb’s functionality can be enhanced by installing the following packages and
enabling them when building Stackdb.

o Xen (if you want Stackdb to attach to to Xen VMs, you'll need the Xen
binaries, and the libxc development headers/libs);

e Qemu (if you want Stackdb to attach to QEMU/KVM VMs, you'll need
the gemu binaries — none of the development headers nor libs though).

« libvmi (Stackdb provides essentially the same memory access functionality
for Xen and KVM that libvmi does; but you can choose to use Stackdb’s
built-in support, or optionally libvmi if you install it and configure Stackdb
to use it at build time);

e gsoap ==2.8.11 (for SOAP XML service support; also necessary for SOAP
clients; must apply Stackdb patches and build it manually!);

¢ python-suds and pysimplesoap (for SOAP XML python clients; must apply
our patch to pysimplesoap);

o a Java SDK >= 1.6, Apache Ant, and Apache Axis2 (for SOAP XML java
clients)

In the following two sections, we provide instructions for building dependencies,
followed by instructions for building this package.

2.2 Notes on Building Dependencies

Grab http://ftp.gnome.org/pub/gnome/sources/glib/2.30/glib-
2.30.2.tar.bz2; unpack; and configure like this:

./configure --prefix=/opt/vmi/glib

We suggest you put glib in /opt to prevent other system binaries from
being linked with it. This could happen if you install it to /usr/local, since
your LD configuration might include /usr/local/lib. This would be bad, so
use /opt, unless you know what you're doing.

Then make and make install like normal:

make && make install

o elfutils
Grab https://fedorahosted.org/releases/e/1/elfutils/0.152/elfutils-
0.152.tar.bz2; unpack; and configure like this (but see note below
first!):

./configure --prefix=/opt/vmi/elfutils --with-zlib --with-bzlib \
--enable-debugpred

http://www.xenproject.org/
http://www.qemu.org/
https://github.com/bdpayne/libvmi/
http://www.cs.fsu.edu/~engelen/soap.html

2.2. NOTES ON BUILDING DEPENDENCIES 11

(you can also add the —-program-prefix=vmi-eu- argument so that you
don’t have confusion between readelf and other binaries from the system
elfutils. .. but this should not happen if you install to /opt/vmi/elfutils,
since /opt/vmi/elfutils/usr/bin is probably not going to be in your PATH!).

Note: if you are building on an ancient Linux (i.e., Fedora 8), you may
need some additional patches when building elfutils. If you are building
on Emulab, you can find these at

— https://fedorahosted.org/releases/e/1/elfutils/0.152 /elfutils-
portability.patch

— https://fedorahosted.org/releases/e/1/elfutils/0.152 /elfutils-
robustify.patch

Just apply them in this order and install normally:

patch -pl < elfutils-portability.patch
patch -pl < elfutils-robustify.patch
./configure &% make && make install

o distorm

Download distorm from https://github.com/gdabah/distorm . Unpack it
and build like this:

cd distorm/make/linux && make && make install

(edit distorm/make/linux/Makefile if you want to install it somewhere
other than /usr/local)

distorm does not install its headers correctly; so manually install them:
cd ../.. && cp -pv distorm/include/* /usr/local/include
(or wherever you changed the Makefile to install to, if not /usr/local)

o Judy

Grab http://downloads.sourceforge.net/project/judy/judy/Judy-
1.0.5/Judy-1.0.5.tar.gz . Unpack, configure, make, make install. If
you change the build prefix to anything other than /usr or /usr/local,
you'll need to tell Stackdb via its ./configure script later on via
--with-judy=/my/prefix.

e gsoap

Grab gsoap_ 2.8.11.zip from http://www.cs.fsu.edu/~engelen/soap.html

Unpack it. Then apply the gsoap-2.8.11-noserve.patch and
gsoap-2.8.11-xs-include-to-module.patch in the Stackdb source
code directory (vmi/xml/etc).

patch -pl < ../../vmi/xml/etc/gsoap-2.8.11-noserve.patch
patch -pl < ../../vmi/xml/etc/gsoap-2.8.11-xs-include-to-module.patch

12 CHAPTER 2. INSTALLING STACKDB

Then configure, make, install. If you change the build prefix to anything
other than /usr, you’ll need to tell Stackdb via its ./configure script later
on via --with-gsoap=/my/prefix.

./configure && make && make install
¢ python-suds

Grab python-suds-0.4.tar.gz from https://fedorahosted.org/suds/ , or in-
stall it via your distro’s packaging system. If installing from source, install
using Python 2.z, not 3.z, via the standard dance of

cd python-suds-0.4 && python2 setup.py build && python2 setup.py install

o pysimplesoap (if you can get >= 1.12 via your distro, you shouldn’t need
the below patch):

Grab the latest pysimplesoap from http://code.google.com/p/pysimplesoap/
. Unpack it, then apply the pysimplesoap-soap-env.patch in the Stackdb
source code (vmi/xml/etc/pysimplesoap-soap-env.patch).

patch -pl < ../../vmi/xml/etc/pysimplesoap-soap-env.patch

Then install using Python 2.z, not 3.z, via the standard dance of

cd pysimplesoap && python2 setup.py build && python2 setup.py install
e Apache Ant and Axis2:

Grab apache-ant-1.8.4-bin.zip from http://ant.apache.org/, and grab axis2-
1.6.2-bin.zip from http://axis.apache.org/axis2/java/core/ . Unpack them
and place them anywhere (/usr/local or /opt are checked by the Stackdb
configure script, or tell Stackdb where they are via the -—-with-ant and
--with-axis2 ./configure options). If there is no javac in your $PATH,
you’ll also have to tell Stackdb’s ./configure script where your Java SDK
is installed via --with-java.

2.3 Building and Installing Stackdb

Stackdb is easy to install. Enter the source directory you cloned or downloaded,
and run autoconf:

cd vmi && autoconf && cd ..
Create a separate build directory:
mkdir vmi.obj && cd vmi.obj

Then run Stackdb’s configure script with the options you need, based on the
instructions above (or run ../vmi/configure --help to make sure you've got
the build options you want):

2.3. BUILDING AND INSTALLING STACKDB 13

../vmi/configure --prefix=/usr/local

(or maybe something like this, if your glib, distorm, and elfutils are installed in
non-standard places:)

../vmi/configure --prefix=/usr/local --with-glib=/opt/vmi/glib \
—--with-elfutils=/opt/vmi/elfutils

Finally, build and install Stackdb:
make && make install

After installing, please refer to the Quick Start or User Guide documen-
tation. (These documents may also be found in the source directory in
vmi/doc{quick-start.md,user-guide.md}.

getting-started.html
user-guide.html

14

CHAPTER 2. INSTALLING STACKDB

Chapter 3

Using Stackdb

Once you’ve built and installed Stackdb, you’ll probably wonder how to get
started. This guide will help you understand Stackdb features and usage model;
configure your system to take full advantage of it; give you a brief tour of the
programs and tools it comes with; and help you get started writing your own
Stackdb programs.

3.1 Quick Start

It’s easy to get started with Stackdb and do some debugging quickly, so this
section is short. If you're already familiar with Stackdb, just install Stackdb,
and jump to the Examples and Demos section.

3.2 Understanding the Concept and Features

Stackdb is not a normal debugger nor memory-forensics tool — although it can
serve both those functions very well — so the first step is to familiarize yourself
with the features Stackdb offers. You can download and read our paper at
http://www.flux.utah.edu/paper/johnson-veel4.

If your interest is in simply using a few features of the system, you’ll be able to
skim some of the more complicated details; but we do encourage you to read
enough to gain a conceptual understanding of Stackdb if you're not familiar with
it.

15

http://www.flux.utah.edu/paper/johnson-vee14

16 CHAPTER 3. USING STACKDB

3.3 How to Run Stackdb Programs

The purpose of most Stackdb programs is to attach to a target program — an
OS running in a VM; a process running in an OS running in a VM; a process
running in userspace; or even a PHP application running in a process running in
an OS running in a VM!

Once attached, usually you want to extract some information from the target,
either by reading its memory, or detecting and analyzing its control flows at key
points.

Each Stackdb program is a peer of the base target it attaches to. That means, if
it is attaching to a VM to debug an OS, it runs in a control VM and attaches
to the target VM. For instance, if you're using Xen, you’ll run your Stackdb
analysis/debugging program(s) in Domain 0, Xen’s privileged control domain,
and attach to other Domains. If you're running QEMU/KVM domains, your
Stackdb program(s) will run in the Linux host, and attach to the QEMU process
that is running your target VM. If you simply want to attach to a Linux userspace
process, just like using GDB to debug a normal program, both the Stackdb
program(s) and the userspace process run in userspace, as peer processes. Stackdb
processes are just debuggers that you attach to the target you want to debug.

3.4 Standard Stackdb Program Arguments

Programs built with Stackdb that use Stackdb’s argument processing can supply
standard, well-known arguments to quickly attach to targets and configure
drivers. Stackdb’s library is configured on a per-target basis, and it has no
configuration language. Either your Stackdb programs use Stackdb’s argument
processing and augment it with any options they require; or they can directly
configure it each time they open a target by populating Stackdb data structures
directly. We strongly encourage you to use Stackdb’s argument processing; it
will simplify your life!

Here is a summary of the common Stackdb program arguments:

-a, ——active-probing=FLAG,FLAG,...
A list of active probing flags to enable (disabled
by default) (thread_entry thread_exit memory other)

-E, --err-file=FILE Log stderr (if avail) to FILE.

-I, ——-in-file=FILE Deliver contents of FILE to target on stdin (if
avail).

-0, --out-file=FILE Log stdout (if avail) to FILE.

-R, --debugfile-root-prefix=DIR
Set an alternate root prefix for debuginfo and
binfile resolution.

-d, --debug=LEVEL Set/increase the debugging level

3.4. STANDARD STACKDB PROGRAM ARGUMENTS 17

(currently, levels run from 1 to 20 or so; higher number is
more verbose output)
-F, --debugfile-load-opts=LOAD-0PTS
Add a set of debugfile load options.
-i, --target-id=ID Specify a numeric ID for the target.
-1, --log-flags=FLAG,FLAG,... Set the debugging flags.
--personality=PERSONALITY Forcibly set the target personality
(1inux is the only one available).
--personality-1ib=PERSONALITY_LIB_FILENAME
Specify a shared library where the personality
specified by --personality should be loaded from.
-s, ——soft-breakpoints Force software breakpoints.
-t, —--target-type=TYPENAME Forcibly set the target type
(ptrace,xen,gdb,os-process,php) .
-w, —-warn=LEVEL Set/increase the warning level.

Typically, Stackdb drivers use unique option names — they don’t share or overlap
by design, if possible. Since Stackdb’s argument processing is built using the
GNU argp library, Stackdb will automatically select the driver matching the
arguments you provide, if you do not specify a driver via the -t option. There
are a few options that overlap; but as long as you pass a unique option first (for
the driver you need to use), you don’t need to specify -t. However, if the driver
you want to use doesn’t require any options at all, you’ll need to specify it with
-t.

If you need to augment your driver with a personality, use the ——personality
option. Currently, the only available personality is the 1linux personality, that
can be used with drivers that provide access to OSes — such as the xen and gdb
(with the gemu helper) drivers. If you develop your own personality outside the
Stackdb source repository, you can specify a shared library filename where the
personality can be found via —-personality-1ib.

3.4.1 Specifying Multiple Targets

Originally, Stackdb’s argp argument processing was designed to be able to handle
a single target passed on the command line, via the above arguments (and driver-
specific arguments, discussed below). However, it is very useful at times to be
able to specify multiple targets so that you can create stacks of targets. Many
Stackdb programs support multiple targets (although a few are best suited to
analyzing single targets only). Thus, for these kinds of programs that do support
multiple targets, not only can you specify a “primary” target on the command
line; you can also use the --base and --overlay arguments to specify additional
base targets, and additional overlay targets:

--base=TARGET_OPTIONS Specify an entire base target in a single
argument. Any standard target option other than

http://www.gnu.org/software/libc/manual/html_node/Argp.html

18 CHAPTER 3. USING STACKDB

--base and --overlay may be used.
--overlay=0VERLAY_PREFIX:TARGET_OPTIONS

Specify an entire overlay target in a single

argument. Your argument must be of the form

[<base_target_id>:]<thread_name_or_id>:TARGET_OPTIONS

So, for instance, you could invoke the backtrace tool like this:

$ backtrace --base '-t xen -m vml -i 10' --base '-t xen -m vm2 -i 20' \
--overlay '10:bash:-t os-process' --overlay '20:php:-t os-process'

and thus obtain backtraces for each thread in the four targets.

3.4.2 Improving Debuginfo Loading Times

The dwdebug library’s behavior can be controlled on a per-debuginfo-file basis.
The -F option’s value can be used to pass in an “rfilter” (a Stackdb regular
expression filter) that can assign specific options to matching files. Typically,
you’ll be happier to globally set these options, rather than work with the powerful-
yet-complex rfilters. Currently, the most useful option is PARTTALSYM. Stackdb’s
dwdebug library was designed to support very fast symbol and address lookups
at runtime. Thus, it reads and indexes (by default) the entire debuginfo file. For
a stock Ubuntu 3.8.x kernel, this can require over 1GB of RAM — the complete
debuginfo for one of these Linux kernels is over 166MB when compressed —
and indexing it unfortunately decompresses it. By enabling the PARTIALSYM
option, the dwdebug library will only load symbols at the highest level of each
compilation unit (essentially, each source file) — and it will expand them as
necessary at runtime. This will result in slightly increased lookup times (the first
time); but will result in significant memory savings. (We’ll probably make this
option the default someday, since expanded loading at runtime is fast anyway.)

$... -F PARTIALSYM ...

3.4.3 Debuginfo Search Path

If your Stackdb program is attaching to a target in userspace, or if the target
program in your VM is running the same binaries as in the VM the Stackdb
program is running in, your debuginfo will likely be installed in normal Linux
locations in the filesystem (i.e., /usr/lib/debug). However, if you are attaching
to an OS or process running in a VM, your VM may have different binaries than
the host filesystem that the Stackdb program is running in. If this is true, you’ll
need to use the -R option to change the debuginfo search path prefix. You’ll need
to create a directory that is a mirror of the relevant parts of the filesystem of
the target program, that includes both the program/library binaries that make
up the target program, and the corresponding debuginfo files for those binaries.

3.4. STANDARD STACKDB PROGRAM ARGUMENTS 19

$... -R /path/to/debuginfo-filesystem-mirror ...

3.4.4 Active Probing

You can enable active probing within drivers that support it. Some drivers
can get all the information they need to stay in control of the executing target
program from the debugging API they attach to. For instance, the Ptrace
driver can read all the information it needs about the target from the ptrace
system call, and by reading the /proc filesystem. However, more complex drivers
(i.e., the Xen or GDB/QEMU drivers that provide access to an OS) can do a
better job of maintaining their model of the target if they self-probe — install
probes inside the target so they are notified immediately when it changes in
some debugger-relevant way. For instance, the generic Linux OS personality can
install probes to detect when processes are created or are exiting (emulating
ptrace(2), sort of), so that it can keep its list of threads up-to-date without
scanning memory at each debug exception or user interrupt. Similarly, it can
install probes on memory allocation-related system calls (mmap, mprotect, etc)
to detect changes to process memory mappings.

If you construct stacks of targets, the overlay drivers may automatically enable
active probing because they require it. However, you may have the option to
do this, or to not do it. Much depends on your Stackdb program’s analysis.
If it makes frequent calls to target_load_all_threads(), you may be better
off enabling active probing for thread_entry and thread_exit — unless your
OS workload is constantly spawning processes. There is always a tradeoff
between how often the self-probing active probes are hit, vs how long it takes
to scan memory when required. Here’s another scenario: the generic Linux OS
personality will scan the Linux kernel’s module list on each debug exception,
looking for new modules so it can load their debuginfo. If you don’t have much
module loading/unloading churn, active probing is a big win, because these
probes will never be hit! On the other hand, constantly rescanning the module
list takes time, and is typically wasted.

Hopefully this guidance helps you get a feel for when and why active probing can
be helpful; but you may be best-served by experimenting with your own Stackdb
applications and your own workloads. Or, if performance overhead doesn’t worry
you, then this may not matter as much.

3.4.5 Standard Debugging Arguments

If you encounter a bug, the maintainers will likely ask you to produce a debug
log. Typically, you'll start by enabling debug messages and optional warnings,
like

$... -d20 -w20 ...

20 CHAPTER 3. USING STACKDB

Then you need to choose a set of log flags, which enable debug and warning
messages in specific components and/or feature areas of Stackdb. Sometimes,
the maintainers may recognize where a problem is likely to have originated, and
can recommend a set of debug flags that will reduce the total logfile size while
still providing enough information to find the bug. There are several log areas:

LIB (L_%*): covers components in the lib/ src dir;

DEBUG (D_x*): covers the dwdebug/ src dir;

TARGET (T_x*): the target/ src dir;

PROBE (P_x%): the probing (breakpoints, watchpoints) components in target/;
XML (X_#*): the xml components in xml/;

* ¥ ¥ X ¥ ¥

USER (U_x): covers any user programs that wish to use Stackdb's
debug/logging framework

The prefixes in parentheses are prepended to individual flag names, so that both
a log area and a log flag (in that area) are specified to form a single flag name
that can be included in the comma-separated list passed to the -1 option. Here
are the individual, per-area flags, with prefixes already prepended:

* LIB: L_CLMATCH, L_CLRANGE (the cl* data structures are used to
index and search ranges and hierarchies of ranges -- for
instance, a program's text segment is a series of nested
ranges corresponding to function symbols), L_RFILTER,
L_WAITPIPE, L_EVLOOP, L_MONITOR, L_REGCACHE (register cache
functions, used by some drivers)

* DWDEBUG: D_DFILE (general debuginfo file issues), D_SYMBOL,
D_SCOPE, D_LOC (symbol location issues), D_LOOKUP (symbol
lookup), D_DWARF (general DWARF processing issues),
D_DWARFATTR (DWARF attribute processing), D_DWARFOPS (DWARF
operation processing -- DWARF includes a stack-machine
expression language that can evaluate expressions to find
locations of variables at runtime, for instance), D_DWARFSOPS
(dwdebug attempts to pre-process trivial DWARF operation
expressions when possible), D_CFA (CFA (aka CFI) --
call frame information, used to unwind the call stack),
D_OTHER, D_BFILE (generic binfile issues), D_ELF
(ELF-specific binfile issues)

* TARGET: T_TARGET (generic target issues), T_SPACE (address
spaces), T_REGION (memory regions), T_LOOKUP (symbol lookup),
T_LOC (location decoding), T_OTHER, T_SYMBOL (symbols),
T_MEMCACHE (memory caching support via mmap; some drivers use
this generic support), T_UNW (unwinding), T_THREAD (threads),
T_DISASM (disassembly), T_0S (0S personality issues),
T_PROCESS (process personality issues), T_APPLICATION
(application personality issues), T_LUP (ptrace driver), T_XV
(xen driver), T_OSP (os-process overlay driver), T_GDB (gdb
driver), T_PHP (php overlay driver)

3.5. SUPPORTED PLATFORMS 21

* PROBE: P_PROBE (probes), P_PROBEPOINT (probes sit atop
probepoints; probepoints implement low-level things like
breakpoints), P_ACTION (single stepping is implemented as an
action, for instance)

* XML: X_XML (general issues), X_RPC, X_SVC, X_PROXYREQ

* USER: U_ALL (basically, Oxffffffff -- Stackdb does not know a
priori what the flag names should be for a user application
-- right now the user can't discriminate specific flag values
within the USER area)

3.5 Supported Platforms

3.5.1 Drivers

Stackdb’s drivers allow you to debug several different kinds of targets. Some
drivers are designed to stack atop other drivers, allowing you to debug a base
target, and several levels of overlay targets. Here’s a quick overview of the drivers
we support; the targets they allow you to attach to; and limitations.

3.5.2 Linux Userspace Process (Ptrace) Driver

This driver is a ptrace(2) driver. It allows a Stackdb program to attach to a
peer Linux process executing on the same machine as the Stackdb program. It
uses the Linux/UNIX ptrace(2) system call to attach to and debug its target
process. It supports multithreaded programs. It was built as a driver to enable
testing, and to flesh out internal APIs; but it may be useful to you on its own. If
you attach to a program that is running as your user 1D, your Stackdb process
does not need root privileges; otherwise, it will need them.

The Ptrace driver can either attach to existing processes; or it can launch a new
process and attach to it. Here is a summary of the options this driver accepts:

-—args=LIST A comma-separated argument list.
-b, --program=FILE A program to launch as the target.
-e, ——envvars=LIST A comma-separated envvar list.
-p, —-pid=PID A target process to attach to.

You can also run your Stackdb program like this:

$./stackdb-program -t ptrace <myoptl> <myopt2> \
-- ./program-to-debug argl arg2 ... argN

Stackdb will interpret all the arguments after the -- as a vector to pass to
execve, essentially. This is the most common and convenient way to launch and
debug programs with the Ptrace driver. If you wish to debug an existing process,

22 CHAPTER 3. USING STACKDB

you can do something like this (if you have pgrep installed, which you almost
certainly do):

$./stackdb-program -t ptrace -p “pgrep -n program-to-debug” \
<myoptl> ... <myoptN>

3.5.3 Xen Driver

The Xen driver allows you to attach to a Xen VM. In this case, your Stackdb
programs run in Domain 0, and they attach to other Xen VMs as necessary
using Xen libraries (libxc, primarily). This driver provides different memory
access mechanisms (available at runtime, depending on the ./configure options
you supplied when building).

This driver may be supplemented by any OS personality. Its functionality is not
especially useful without an OS personality; without a personality, the driver can
only debug the currently executing thread, within its current memory context.
However, if one is used, the Xen driver can support multiple threads, virtual and
physical address spaces (and thus memory), and kernel and userspace thread
contexts.

At the present time, the Xen driver only supports single-CPU VMs. This
limitation is an artifact of our research project, not a fundamental limitation in
Stackdb’s design. Contact us if you're interested in or require such a configuration;
if the need arises, we may consider building this support.

The Xen driver cannot launch VMs yet; it can only attach to them.
Here’s a quick overview of the options available:

-C, —--clear-libvmi-caches-each-rw
Clear libvmi caches on each memory-read/write.
--hypervisor-ignores-userspace-exceptions
If your Xen hypervisor is not a Utah-patched
version, make sure to supply this flag!

-H, -—-no-clear-hw-debug-regs Don't clear hardware debug registers at target attach.
-K, ——kernel-filename=FILE Override xenstore kernel filepath for guest.

-m, —--domain=DOMAIN The Xen domain ID or name.

-M, --no-use-multiplexer Do not spawn/attach to the Xen multiplexer server

-T, —--dominfo-timeout=MICROSECONDS

If libxc gets a "NULL" dominfo status, the number of microsec
-V, -—-no-hvm-setcontext Don't use HVM-specific libxc get/set context functions to a
-x, ——xenlib-debug=LEVEL Increase/set the XenAccess/OpenVMI debug level.

First, you must tell the driver which domain to attach to, via the -m option.
If you run your Xen VM in paravirtualized mode, then the Xen driver will be
able to detect which kernel filename you are running and will attempt to find
debuginfo for it in the standard location (or in the prefix you supplied with -R).

3.5. SUPPORTED PLATFORMS 23

However, if you are running an HVM, you must tell the driver the filename of
the kernel your VM is running, via the -K option.

Note that the Xen driver’s hardware breakpoints may not work for all Xen
versions; if this happens to you, try to use the -s argument to force software
breakpoints.

The Xen driver allows you to attach to multiple Xen VMs from Domain 0 (either
within the same Stackdb program, or from within different Stackdb programs
running at the same time). We need special code to do this because Xen only
provides the ability for one Domain 0 program to listen for debug exceptions
on other domains. Thus, the Xen driver provides a demultiplexing service that,
when utilized, notifies all Stackdb programs attached to Xen VMs when there is
a Xen debug exception. If you only need to attach to a single VM at one time,
and don’t want to incur any of the tiny, minimal overhead of the demultiplexing
service, you can disable it via the -M option.

Another important option affects your ability to stack other drivers atop the
Xen driver (i.e., to stack the os-process userspace-process driver atop the
Xen driver, to debug processes in VMs from outside the VM). This option is
--hypervisor-ignores-userspace-exceptions. It’s not important if you're
not stacking, though; you can attach to Xen VMs and debug the kernel without
worrying about it. Here’s a brief summary (the technical details are involved).
Basically, the Xen hypervisor catches kernel-mode debug exceptions (int 3 and
debug traps), and, if there’s a debugger attached via the debugger VIRQ, it
notifies the debugger and pauses the VM so the debugger can handle it. However,
the hypervisor does not forward userspace debug exceptions to the debugger; it
naturally expects that there’s a userspace debugger running inside the VM that
will handle the exceptions in cooperation with the guest kernel. Initially when
developing stackdb, we patched the hypervisor to also forward userspace debug
exceptions, but that doesn’t easily let us support distro-packaged hypervisors.
So we observed that since the hypervisor passes userspace exceptions back to
the guest kernel (or the guest kernel gets them directly via HVM IDT), we could
just install breakpoints on the guest kernel debug handlers, and emulate how
they would handle a userspace exception (but we do the work if the userspace
exception was a VMI-triggered exception) — and then immediately return from
the handler in the kernel isntead of single-stepping the first instruction of the
interrupt handler. So, VMI actually handles the userspace exception, but the
kernel thinks it did. This works fine for HVM, but it is more complicated for
PV domains, and it doesn’t currently work. The hypervisor has to explicitly
support this style of exceptions, and notice in which ring the exception occurred;
this currently doesn’t appear to be what the code does (and it’s not what we
observe at all). So this feature is not currently supported for PV domains, which
means that if you want to use the os-process driver atop the Xen driver on a
PV domain, you’ll need Utah’s simple Xen patch, and then rebuild your Xen
packages.

The other options mainly cover special cases and problems we’ve observed in

24 CHAPTER 3. USING STACKDB

Xen.

3.5.4 GDB/QEMU/KVM Driver

The GDB driver allows you to attach to any program that is coupled to a [GDB
server stub] (and we use it to provide access to QEMU/KVM VMs) too. Many
embedded systems, or more relevant to Stackdb, virtual machine hypervisors
like Xen and QEMU/KVM, provide GDB server stubs that a GDB client can
interact with to debug the embedded system, or the OS running inside a VM.
Since each GDB server stub is different, and because Stackdb might require
(or be able to leverage) additional platform information beyond what can be
expressed in the GDB remote protocol), Stackdb’s GDB driver allows the user
to “plug in” helper modules.

Here are the primary options for the GDB driver:

--gdb-host=HOST The hostname the GDB stub is listening on
(default localhost).
--gdb-port=PORT The port the GDB stub is listening on (default 1234).

-—gdb-sockfile=FILE The UNIX domain socket filename the GDB stub
is listening on.
--gdb-udp Use UDP instead of TCP (default TCP).
--memcache-mmap-size=BYTES Max size (bytes) of the mmap cache
(default 128MB).
-M, --main-filename=FILE Set main binary's filepath for target.

First, you must tell the driver the filename of the “main” program running inside
the target, via the -M option. This is probably a kernel. The other important
options to specify are -—gdb-host and --gdb-port, if necessary.

3.5.4.1 QEMU GDB Helper

Stackdb supports part of the GDB remote debugging protocol, enough to provide
debugging of QEMU/KVM VMs. To attach to QEMU/KVM VMs, the user
must also specify the use of the QEMU helper. Currently, you must use our
special QEMU support to use the QEMU helper. The QEMU helper relies on
two additional non-GDB sources of information: 1) access to the VM’s “physical”
memory allocated by the QEMU process; and 2) access to the QEMU monitor
port to load a few additional register values as needed.

Here are the QEMU helper’s options:

--gemu Enable QEMU GDB stub support

--gemu-mem-path=FILE Read/write QEMU's physical memory via this
filename (see QEMU's -mem-path option; also
preload libnunlink.so and set QEMU_MEMPATH_PREFIX

3.5. SUPPORTED PLATFORMS 25

accordingly) .
--gemu-libvirt-domain=DOMAIN
Access QEMU QMP over libvirt proxy.
--gemu-gmp-host=HOST Attach to QEMU QMP on the given host
(default localhost).
--gqemu-qmp-port=PORT Attach to QEMU QMP on the given port
(default 1235).
--kvm Enable KVM support.

3.5.4.2 QEMU/KVM Configuration

You must run your QEMU VM specifically to take advantage of Stackdb —
although you do not have to modify QEMU itselfl We have only tested our
method with QEMU 2.0.x and 2.1.x; it may fail with other versions. Here’s what
you have to do.

First, follow instructions like those at http://www.linux-kvm.org/page/
UsingLargePages to setup a hugetlbfs filesystem mounted at a location of your
choosing; in the commands below, I assume you mount that filesystem at
/hugetlbfs. Here’s a quick set of commands that will help you get this going:

Mount hugetlbfs at /hugetlbfs
$ sudo mkdir /hugetlbfs
$ sudo mount -t hugetlbfs hugetlbfs /hugetlbfs

+H+

Reserve enough pages to it, for whatever your VMs
will consume --- 512 will get you 1024M of 2M hugepages
echo 512 | sudo tee /proc/sys/vm/nr_hugepages

“ H

Make sure the system was able to get you all 512 pages
you asked for. As the link above will tell you, it is
best to mount hugetlbfs and reserve hugepages to it before
your system's memory becomes fragmented. One easy way to
recover some memory is to kill Firefox!

cat /proc/meminfo | grep Huge

@ H H H HH

3.5.4.3 Manually Running QEMU/KVM

Once you have hugetlbfs setup, run your QEMU VM:

$ sudo QEMU_MEMPATH_PREFIX=/hugetlbfs/qemu \
LD_PRELOAD=/path/to/stackdb-build-dir/target/.libs/libgemuhacks.s0.0.0.0 \
gemu-system-x86_64 -cpu host -m 512 -enable-kvm \
-kernel /boot/vmlinuz-2.6.18-308.el5 -initrd /boot/automfs-2.6.18-308.el5.img \
-append console=ttySO -nographic \
-gdb tcp::1234 —qmp tcp:127.0.0.1:1235,server,nowait -mem-path /hugetlbfs

http://www.linux-kvm.org/page/UsingLargePages
http://www.linux-kvm.org/page/UsingLargePages

26 CHAPTER 3. USING STACKDB

QEMU_MEMPATH_PREFIX is an environment variable that is looked for
by libgemuhacks.s0.0.0.0, which is itself LD_PRELOADed before the gemu-
system-x86_ 64 program runs. libgemuhacks.s0.0.0.0 simply ensures that the
file that QEMU creates in /hugetlbfs (or whatever you set -mem-path to above
in your QEMU command) as a backing store for your VM’s physical RAM is
1) mmap’d with MAP_ SHARED instead of MAP_PRIVATE so that other
processes can mmap it too; and 2) that the file is not immediately unlink()’d
after QEMU opens it. Thus, it interposes on mmap and unlink, and ensures
that any filename passed to those system calls that starts with the value in
QEMU_MEMPATH_PREFIX is 1) mmap’d with MAP_ SHARED, and 2) is
not actually unlinked, so it stays present in the filesystem. libgemuhacks.so
does try to remove those files when the QEMU process terminates, but if the
process is sent a SIGKILL, it cannot catch the dying/exiting process — and in
this case, you’ll need to manually remove those files. libgemuhacks.so supports
different strategies to try to remove these files. First, it interposes on the signals
QEMU monitors to terminate itself (the same code path is followed if the QEMU
process is signaled externally, or the code inside the machine shuts it down); this
is the default and best option. It can also install an atexit() handler to try to
remove these files, but that doesn’t do anything for QEMU 2.x, because QEMU
self-terminates by signaling its process. Finally, of course, you must also set
LD_PRELOAD to preload libgemuhacks.s0.0.0.0.

Then, once your VM has started, a file like /huget1lbfs/qgemu_back_mem.pc.ram. *
should appear; that is the file that Stackdb will try to mmap to obtain direct
access to the VM’s “physical” memory. When you run a Stackdb program to
attach to QEMU, your command will look like

$ sudo gdb --args dumptarget -t gdb --gemu \
—--gdb-port 1234 --gemu-qmp-port 1235 \
--gemu-mem-path /hugetlbfs/qemu_back_mem.pc.ram.AMytAl \
--kvm -M /tftpboot/vmlinux-syms-2.6.18-308.el5 \
-s sys_open

(We do not depend on hugetlbfs nor hugepages specifically; we don’t care about
that; however, the -mem-path option only works on a hugetlbfs mountpoint. All
we care about is that QEMU leaves us with a file we can mmap to get physical
memory access — and this was the only way to get access without hacking
QEMU!)

3.5.4.4 Using Libvirt to Run QEMU/KVM

First, make sure you’ve read the section above on running QEMU/KVM manually;
this will explain the necessary environment variables and command-line options.
We need to customize the libvirt VM config file to allow Stackdb to attach to it.

One of my config files (/etc/libvirt/qemu/vml.xml) looks like this:

3.5. SUPPORTED PLATFORMS 27

<domain type='kvm' xmlns:qgemu='http://libvirt.org/schemas/domain/qemu/1.0'>
<name>vml</name>
<uuid>29bfac01-b24d-e4ab-e741-£33f7e880d9d</uuid>
<memory unit='KiB'>524288</memory>
<currentMemory unit='KiB'>524288</currentMemory>

<memoryBacking>
<hugepages/>
</memoryBacking>

<vcpu placement='static'>1</vcpu>
<os>
<type arch='x86_64' machine='pc-i440fx-2.0'>hvm</type>
<kernel>/tftpboot/roots/centos5.5-x86_64/boot/vmlinuz-2.6.18-308.el5</kernel>
<initrd>/tftpboot/roots/centos5.5-x86_64/boot/initrd-2.6.18-308-full.el5.img</initrd>
<cmdline>"console=tty0 console=ttyS0,115200n8"</cmdline>
<boot dev='hd'/>
</os>
<features>
<acpi/>
<pae/>
</features>
<clock offset='utc'/>
<on_poweroff>destroy</on_poweroff>
<on_reboot>restart</on_reboot>
<on_crash>restart</on_crash>
<devices>
<emulator>/usr/bin/qemu-system-x86_64</emulator>
<controller type='usb' index='0'>
<address type='pci' domain='0x0000' bus='0x00' slot='0x01' function='0x2'/>
</controller>
<controller type='pci' index='0' model='pci-root'/>
<serial type='pty'>
<target port='0'/>
</serial>
<console type='pty'>
<target type='serial' port='0'/>
</console>
<input type='mouse' bus='ps2'/>
<input type='keyboard' bus='ps2'/>
<graphics type='vnc' port='-1' autoport='yes' keymap='en-us'/>
<video>
<model type='cirrus' vram='9216' heads='1'/>
<address type='pci' domain='0x0000' bus='0x00' slot='0x03' function='0x0'/>
</video>
<memballoon model='virtio'>

28 CHAPTER 3. USING STACKDB

<address type='pci' domain='0x0000' bus='0x00' slot='0x02' function='0x0'/>
</memballoon>
</devices>

<gemu: commandline>

<gemu:arg value='-gdb'/>

<gemu:arg value='tcp:127.0.0.1:1234,nowait,nodelay,server'/>

<gemu:env name='QEMU_MEMPATH_PREFIX' value='/hugetlbfs/'/>

<gemu:env name='LD_PRELOAD' value='/home/johnsond/g/a3/vmi.master.obj/target/.libs
</qemu:commandline>

</domain>
The first important bit is

<memoryBacking>
<hugepages/>
</memoryBacking>

This will execute QEMU with hugepage support. Current libvirt distributions
automatically detect your hugetlbfs mountpoint, and will place a directory
in it for QEMU VMs to use, like /hugetlbfs/libvirt/qemu. This directory
must be readable/writeable by the gemu user on my install; yours is prob-
ably similar. If this doesn’t happen automatically, you can manually tell
libvirt where the hugetlbfs mountpoint is, by changing the following line in
/etc/libvirt/qemu. conf:

hugetlbfs_mount = "/hugetlbfs"
The second important bit is

<gemu:commandline>

<gemu:arg value='-gdb'/>

<gemu:arg value='tcp:127.0.0.1:1234,nowait,nodelay,server'/>

<gemu:env name='QEMU_MEMPATH_PREFIX' value='/hugetlbfs/'/>

<gemu:env name='LD_PRELOAD' value='/home/johnsond/g/a3/vmi.master.obj/target/.libs
</qemu:commandline>

This tells the QEMU process to start up its GDB stub, and listen on the
host/port indicated; and to set the two environment variables we need. Change
the value for LD_ PRELOAD to the location where libgemuhacks.s0.0.0.0 is on
your system.

3.5.4.5 Using Eucalyptus to Run QEMU/KVM

Eucalyptus uses Libvirt to manage VMs. When Eucalyptus creates a VM (i.e.,
if you use the euca-install-image command, or the Eucalyptus web console),
Eucalyptus will take the input, then map a Libvirt XML file template, and

3.5. SUPPORTED PLATFORMS 29

finally generate an XML file that could be taken as an input by Libvirt APIs.
We need to modify the Libvirt XML file template as done in the previous section.

The template file is probably /etc/eucalyptus/libvirt.xsl . This is a template to
match all the Eucalyptus options, so you would see many “if” clauses in it. You
would find below three lines, which checks whether the hypervisor type is Xen
or KVM.

<domain>
<xsl:attribute name="type">
<xsl:value-of select="/instance/hypervisor/Q@type"/>
</xsl:attribute>

Since Xen on Eucalyptus isn’t well-supported, and since we only want it to work
for KVM here, you could safely comment out those three lines, and add the
extra lines for KVM like in last section.

Then, add several lines right after the lines being commented out:

<domain type="kvm" xmlns:qemu="http://libvirt.org/schemas/domain/qemu/1.0">
<memoryBacking>
<hugepages/>
</memoryBacking>
<gemu: commandline>
<gemu:arg value='-gdb'/>
<gemu:arg value='tcp:127.0.0.1:1234,nowait,nodelay,server'/>
<gemu:env name='QEMU_MEMPATH_PREFIX' value='/hugetlbfs/'/>
<gemu:env name='LD_PRELOAD' value='/home/mind/Downloads/vmi/stackDB/vmi.obj/target/.1libs/1libc
</qemu:commandline>

Then you can create Eucalyptus VMs as before, using “euca-run-instances” or
web console; the generated memory file will be in /hugetlbfs/libvirt/qemu.
Note that since the tcp port is specified as 1234 in the XML template, so when
you simply use the same way to create Eucalyptus VM again, it would fail since
the specific tcp port has been taken, so remember to change the file to some other
port number if you want multiple VMs running which all could use StackDB.
(There might be a way to modify the Eucalyptus source code or the template
itself in order to automatically change the port number, but we haven’t needed
that yet.)

3.5.4.6 Using OpenStack to Run QEMU/KVM

[TBD. |

30 CHAPTER 3. USING STACKDB

3.5.5 OS Process Driver

There is no special configuration necessary to use this driver — but you must
ensure that the underlying base driver is configured with an OS personality!
This currently happens automatically, and is assumed.

(However, if you're trying to use the OS Process driver atop a Xen PV domain,
you’ll need to read the Xen driver section, particularly the part about the
--hypervisor-ignores-userspace-exceptions option!

3.5.6 PHP Driver

There is no special configuration necessary to use this driver. However, it does
not support many Stackdb features, and only supports a tiny subset of PHP.
You probably shouldn’t use this driver except for global or member function
breakpoints, unless you're willing to hack it!

3.5.7 Personalities
3.5.7.1 “Generic” Linux OS Personality

The only personality currently available is the Linux OS personality, which
provides the OS personality interface. We have tested it on Linux kernels 2.6.18,
2.6.32, 3.2.x, and 3.8.x. It may well work on kernels in between, or it may not.
The reason it may not work for every kernel is because it relies on the presence
of specific symbols and data types to obtain some of its information to provide
a full model of the running kernel to Stackdb. When these symbols change,
Stackdb must account for them. Fortunately, Stackdb’s symbol set is quite small
and unlikely to change.

3.6 Supported Configurations

Remember, Stackdb is designed to allow you to stack targets atop each other to
debug an entire software stack. You can use each of the base drivers (xen, gdb,
ptrace) to attach to individual targets; and you can stack the overlay drivers
atop them. The OS-Process driver can sit atop any base driver that provides an
OS personality (the Xen and GDB/KVM/QEMU drivers do, when combined
with the Linux OS personality); and the PHP driver can sit atop either the
OS-Process or Ptrace drivers, since they provide access to processes, and PHP
runs in a process. Here are two diagrams that may help you visualize how
stacked driver configurations work: stack of Xen, OS-Process, and PHP drivers;
stack of Ptrace and PHP drivers

arch.svg
arch-ptrace.svg

3.7. WORKING WITH DEBUGINFO 31

3.7 Working with Debuginfo

In order for Stackdb to be a useful debugger and memory forensics tool, it must
provide source-level debugging. Without source- and type-knowledge of the
target program you are analyzing, it is difficult and time-consuming to figure
out which memory to read and how to interpret it.

If you’ve ever used GDB to debug a crashing program that you (or someone else)
wrote, you've probably used GDB’s bt command to obtain a backtrace. If you
hadn’t installed the debugging symbols for the binaries and libraries used in the
program, you would at best see a backtrace with function addresses and names:

$ gdb --args bash
GNU gdb (Ubuntu 7.7-Oubuntu3.1) 7.7
Copyright (C) 2014 Free Software Foundation, Inc.

Reading symbols from bash...(no debugging symbols found)...done.
(gdb) b make_child

Breakpoint 1 at 0x446450

(gdb) r

Starting program: /bin/bash

Breakpoint 1, 0x0000000000446450 in make_child ()
(gdb) bt

#0 0x0000000000446450 in make_child ()

#1 0x000000000044e507 in command_substitute ()

#2 0x000000000045167e in 77 ()

#3 0x00000000004548ea in 77 ()

#4 0x0000000000455777 in 77 ()

#5 0x0000000000455fec in 77 ()

#6 0x00000000004560ac in expand_word_unsplit ()

#7 0x00000000004360cc in execute_command_internal ()
#8 0x000000000043784e in execute_command ()

#9 0x0000000000435fc7 in execute_command_internal ()
#10 0x0000000000478350 in parse_and_execute ()

#11 0x0000000000477be3 in 77 ()

#12 0x0000000000477de7 in maybe_execute_file ()

#13 0x000000000041fa20 in main ()

(gdb)

However, you would not have seen a backtrace with function argument values,
unless you had installed debug symbols. Moreover, you would not have been
able to examine each frame’s local variable values without debug symbols. Since
we're running GDB on an Ubuntu system, we can simply follow the instructions
for working with Ubuntu Debug Symbol Packages:

echo "deb http://ddebs.ubuntu.com $(lsb_release -cs) main restricted universe multiverse" \

https://wiki.ubuntu.com/DebuggingProgramCrash#Debug_Symbol_Packages

32

CHAPTER 3. USING STACKDB

| sudo tee -a /etc/apt/sources.list.d/ddebs.list

echo "deb http://ddebs.ubuntu.com $(1lsb_release -cs)-updates main restricted universe 1

| sudo tee -a /etc/apt/sources.list.d/ddebs.list

echo "deb http://ddebs.ubuntu.com $(1lsb_release -cs)-proposed main restricted universe

| sudo tee -a /etc/apt/sources.list.d/ddebs.list

sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys 428D7CO1
sudo apt-get update

Then we can install bash’s debug symbols like this:

sudo apt-get install bash-dbgsym

Then our GDB backtrace becomes much more useful:

$ gdb --args bash

GNU

gdb (Ubuntu 7.7-Oubuntu3.1) 7.7

Copyright (C) 2014 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

Reading symbols from bash...Reading symbols from /usr/lib/debug//bin/bash...done.
done.

(gdb) b make_child

Breakpoint 1 at 0x446450: file .././jobs.c, line 1717.

(gdb) r

Starting program: /bin/bash

Breakpoint 1, make_child (command=command@entry=0x0, async_p=0) at .././jobs.c:1717

1717 .././jobs.c: No such file or directory.

(gdb) bt

#0 make_child (command=command@entry=0x0, async_p=0) at .././jobs.c:1717

#1 0x000000000044e507 in command_substitute (string=string@entry=0x70db88 "groups", q

#2 0x000000000045167e in param_expand (string=string@entry=0x70da48 " $(groups) ", si
expanded_something=expanded_something@entry=0x0, contains_dollar_at=contains_dolla
quoted_dollar_at_p=quoted_dollar_at_pQentry=0x7fffffffde00, had_quoted_null_p=had_
at .././subst.c:7952

#3 0x00000000004548ea in expand_word_internal (word=word@entry=0x70dd28, quoted=quote
contains_dollar_at=contains_dollar_atQ@entry=0x7fffffffdf28, expanded_something=exp:

#4 0x0000000000455777 in expand_word_internal (word=word@entry=0x70c468, quoted=<optil
contains_dollar_at=contains_dollar_at@entry=0x0, expanded_something=expanded_somet!

#5 0x0000000000455fec in call_expand_word_internal (w=0x70c468, g=<optimized out>, i=

#6 0x00000000004560ac in expand_word_unsplit (word=<optimized out>, quoted=<optimized
#7 0x00000000004360cc in execute_case_command (case_command=<optimized out>) at .

#8 execute_command_internal (command=0x70cdc8, asynchronous=7392648, pipe_in=-1, pipe

#9 0x000000000043784e in execute_command (command=0x70cdc8) at .././execute_cmd.c:390

#10 0x0000000000435fc7 in execute_if_command (if_command=<optimized out>) at .././exec

#11 execute_command_internal (command=0x70ce48, asynchronous=7392776, pipe_in=-1, pipe

#12 0x0000000000478350 in parse_and_execute (string=<optimized out>, from_file=from_fi

at ../.././builtins/evalstring.c:367

3.8. STACKDB TOOLS 33

#13 0x0000000000477be3 in _evalfile (filename=filename@entry=0x6fel48 "/etc/bash.bashrc", flags=1

#14 0x0000000000477de7 in maybe_execute_file (fname=fname@entry=0x4b50d7 "/etc/bash.bashrc", forc
at ../.././builtins/evalfile.c:320

#15 0x000000000041fa20 in run_startup_files () at .././shell.c:1134

#16 main (argc=1, argv=0x7fffffffe6e8, env=0x7fffffffe6f8) at .././shell.c:655

(gdb)

We can also load and examine variable values trivially:

(gdb) p environ

$1 = (char *x) Ox7fffffffe6f8

(gdb) p environ[0]

$2 = Ox7fffffffe8fd "XDG_SESSION_ID=1"
(gdb) p environ[1]

$3 = Ox7fffffffe90e "SHELL=/bin/bash"
(gdb) p environ[2]

$4 = Ox7fffffffe9le "TERM=xterm-color"
(gdb)

We can also examine type information:

(gdb) ptype make_child
type = int (char *, int)
(gdb)

Of course, GDB can do many other things as well, and so can Stackdb. But
the point here is that a debugger is much more powerful when you make debug
symbols available to it.

3.7.1 Installing Debuginfo Packages on Ubuntu Systems

Read and refer to Ubuntu Debug Symbol Packages.

3.7.2 Installing Debuginfo Packages on Fedora/CentOS
Systems

Read and refer to Fedora Debug Symbol Packages.

3.8 Stackdb Tools

Stackdb provides some utility programs, as well as some “real” programs that
perform useful analyses of a target. We discuss these in the following sections.

https://wiki.ubuntu.com/DebuggingProgramCrash#Debug_Symbol_Packages
https://fedoraproject.org/wiki/StackTraces

34 CHAPTER 3. USING STACKDB
3.8.1 dumpdebuginfo

dumpdebuginfo is the only dwdebug-specific tool Stackdb provides. It does
not provide access to targets; but instead reads, parses, indexes, and displays
debuginfo files. It displays types and symbols in the hierarchies in which they
are present in the source program.

Usage: dumpdebuginfo [options] filename [symbols or addresses to look up]

-d Increase debug level

-dN Set debug level to N

-w Increase optional warning level

-wN Set optional warning level to N

-1 FLAG,FLAG,... A comma-separated list of debug area flags
-D Increase the level of detail shown

-M Increase the level of metadata shown (i.e., location info)

-F Specify debuginfo load options; an rfilter
-T Disable display of global types
-G Disable display of global variables/functions
-5 Disable display of symbol tables
-R Disable display of ranges
-E Disable display of ELF symbol tables
-N Don't waste time freeing data structures on exit
-I N:ADDR,N:ADDR,...
Tell the ELF library that section N was loaded at ADDR
-i ADDR Specify a base address

Here’s a minimal “Hello, world!” program:

#include <stdio.h>

int main(int argc,char **argv) {
printf ("Hello, world!\n");
return 0;

}

Here’s an example of running dumpdebuginfo on this minimal program (slightly
tweaked to break up the very long lines normally present). The main things to
take away from this example are the structure of the debuginfo, that mirrors
the structure of the code; the fact that many symbols have locations, and
some symbols are only available in certain text segments (and maybe be in a
different location depending on which text segment the processor is executing!);
the extensive type information. Basically, if you need to find a symbol, or to
see if a symbol is actually available at a given text address within a function,
dumpdebuginfo can be very helpful. Note that in addition to passing the
debuginfo filename, you can also specify symbols and/or addresses to look up;
in that case, only the search results will be printed, not the entire debuginfo file

3.8. STACKDB TOOLS 35

dump. When you search for a symbol, you may search for things like a.b.c,
where a is a struct; b is a member of typeof(a); and c is a member of typeof(c).
Moreover, you may use the ¢ operator to indirect across pointers. Thus, if ‘b’ is
actually a pointer to another struct type, which contains ‘c’ as a member, this

search will still return a chain of symbols (an lsymbol).
$ dumpdebuginfo -DM hello_world

debugfile(/home/johnsond/hello_world) :
flags: 0x0
refcnt: 1
types: (12)
type: (4 B) (encoding=5)
type: (8 B) (encoding=7)
type: (1 B) (encoding=6)
type: (8 B) (encoding=5)
type: (4 B) (encoding=7)
type: (2 B) (encoding=5)
type: (8 B) (encoding=7)
type: typedef (8 B) (encoding=7) size_t (1ine=213)
type: (1 B) (encoding=6)
type: (2 B) (encoding=7)
type: (1 B) (encoding=8)
type: void
shared_types: (0)
globals: (3)
func: void __libc_csu_fini () (external,prototyped,frame_base=R7+8,line=95,) @@ 0x400620
scope(__libc_csu_fini 0@ 0x400620) RANGES([0x400620,0x4006221) { }
func: int main (int argc (line=3,) @@ FB-20, char** argv (line=3,) @@ FB-32)
(external,prototyped,frame_base=LIST([0x40056c,0x40056d->R7+8] , [0x40056d,0x400570->
[0x400570,0x40058b->R6+16] , [0x40058b,0x40058c->R7+8]) ,1ine=3,) @@ 0x40056c
scope(main @@ 0x40056c¢c) RANGES([0x40056c,0x40058c]) { }
func: void __libc_csu_init (int argc (line=67,)
@@ LIST([0x400590,0x4005cd->R5], [0x4005cd,0x400614->R15],
[0x400614,0x400619->RUNTIMEDATA (4,£31559f) 1),
char*x argv (line=67,)
@@ LIST([0x400590,0x4005cd->R4], [0x4005cd,0x40060f->R14],
[0x40060f ,0x400619->RUNTIMEDATA (4,£31549f)]),
char** envp (line=67,)
@@ LIST([0x400590,0x4005cd->R1], [0x4005cd,0x40060a->R13],
[0x40060a,0x400619->RUNTIMEDATA (4,£31519f)1))
(external,prototyped,frame_base=LIST([0x400590,0x4005bb->R7+8],
[0x4005bb, 0x400618->R7+64] , [0x400618,0x400619->R7+8]) ,1ine=67,) @@ 0x400590
scope(__libc_csu_init @@ 0x400590) RANGES([0x400590,0x400619]) { }
root srcfiles: (2)
root: hello_world.c (compdirname=/home/johnsond,producer=GNU C 4.7.3,language=C89 (1)) {

CHAPTER 3. USING STACKDB

scope(hello_world.c @@ 0x40056c) RANGES([0x40056c,0x40058c]) {
symbols: {
type: (4 B) (encoding=5)
type: (8 B) (encoding=7)
type: (1 B) (encoding=6)
type: (8 B) (encoding=5)
func: int main (int argc (line=3,) @@ FB-20,
char** argv (line=3,) @@ FB-32)
(external,prototyped,frame_base=LIST([0x40056c,0x40056d->R7+8],
[0x40056d,0x400570->R7+16] , [0x400570,0x40058b->R6+16] ,
[0x40058b,0x40058c->R7+8]) ,1ine=3,) @@ 0x40056c
scope(main @@ 0x40056c) RANGES([0x40056c¢,0x40058c]) { }
type: (4 B) (encoding=7)
type: (2 B) (encoding=5)
type: (8 B) (encoding=7)
type: (1 B) (encoding=6)
type: (2 B) (encoding=7)
type: (1 B) (encoding=8)
type: void
}
subscopes: {
scope(main @@ 0x40056c) RANGES([0x40056c,0x40058c]) {
symbols: {
var: char** argv (line=3,) @@ FB-32
var: int argc (line=3,) Q@ FB-20

}
}
}
root: elf-init.c (compdirname=/var/tmp/portage/sys-libs/glibc-2.19-r1/work/glibc-2
producer=GNU C 4.7.3,language=C89 (1)) {
scope(elf-init.c @@ 0x400590) RANGES([0x400590,0x400622]) {
symbols: {
type: (4 B) (encoding=b)
type: (1 B) (encoding=6)
type: (8 B) (encoding=7)
func: void __libc_csu_init (int argc (line=67,)
@@ LIST([0x400590,0x4005cd->R5], [0x4005cd, 0x40!
[0x400614 ,0x400619->RUNTIMEDATA (4, £315!
char** argv (line=67,)
@@ LIST([0x400590,0x4005cd->R4], [0x4005cd,0x40
[0x40060f ,0x400619->RUNTIMEDATA (4,£315

char** envp (l1ine=67,)
@@ LIST([0x400590,0x4005cd->R1], [0x4005cd,0x40060a->R13],

3.8. STACKDB TOOLS 37

[0x40060a,0x400619->RUNTIMEDATA (4,£31519f)]))
(external,prototyped, frame_base=LIST([0x400590,0x4005bb->R7+8],
[0x4005bb,0x400618->R7+64] , [0x400618,0x400619->R7+8]) ,1ine=67,) @@ 0x400590
scope(__libc_csu_init @@ 0x400590) RANGES([0x400590,0x400619]) { }
func: _init () (external,prototyped,decl,line=55,)
type: (8 B) (encoding=5)
var: ()*[<UNK>] __init_array_end (external,isdecl,line=46,)
var: ()*[<UNK>] __init_array_start (external,isdecl,line=44,)
type: typedef (8 B) (encoding=7) size_t (line=213)
func: void __libc_csu_fini () (external,prototyped,frame_base=R7+8,line=95,) @@ 0x4006:
scope(__libc_csu_fini 0@ 0x400620) RANGES([0x400620,0x400622]1) { }
type: void
}
subscopes: {
scope(__libc_csu_init @@ 0x400590) RANGES([0x400590,0x400619]) {
symbols: {
var: const size_t size (line=86,)
var: char** argv (line=67,)
@@ LIST([0x400590,0x4005cd->R4], [0x4005cd,0x40060f->R14],
[0x40060f ,0x400619->RUNTIMEDATA (4,£31549£)])
var: char** envp (line=67,)
@@ LIST([0x400590,0x4005cd->R1], [0x4005cd,0x40060a->R13],
[0x40060a,0x400619->RUNTIMEDATA(4,£31519f)])
var: int argc (line=67,)
@@ LIST([0x400590,0x4005cd->R5], [0x4005cd,0x400614->R15],
[0x400614,0x400619->RUNTIMEDATA (4,f31559f)])
}
subscopes: {
scope () RANGES ([0x4005bb,0x4005c9] [0x4005ce, 0x4005£6]) {
symbols: {
var: size_t i (1ine=87,)
@@ LIST([0x4005ce,0x4005dc->RUNTIMEDATA(2,309f)], [0x4005f1,0x4005f6->R3])
}
¥
}
}
scope(__libc_csu_fini @@ 0x400620) RANGES([0x400620,0x400622]) { }
scope ((null)) { %}
}
}
}

multi-use srcfile symtabs: (0)
ranges:
0x40056¢,0x40058c: hello_world.c

38

CHAPTER 3. USING STACKDB

0x400590,0x400622: elf-init.c
binfile root: (tab=47,anon=0,dup=0,subscopes=0)
root: /home/johnsond/hello_world (compdirname=(null),producer=(null),language=(nul!
scope (/home/johnsond/hello_world) {
symbols: {

var: .bss (external,) @@ 0x601040 (8 B)
var: _end (external,) @@ 0x601048 (0 B)
func: .fini () (external,prototyped,) @@ 0x400624 (9 B)
func: __gmon_start__@plt () (external,prototyped,) @@ 0x400470 (16 B)
var: .rela.plt (external,) @@ 0x4003d8 (72 B)
var: .got (externmal,) @@ 0x600ff8 (8 B)
func: _fini () (external,prototyped,) @@ 0x400624 (9 B)
var: _GLOBAL_OFFSET_TABLE_ @@ 0x601000 (48 B)
var: __TMC_END__ (external,) @@ 0x601040 (8 B)
func: .plt () (external,prototyped,) Q@@ 0x400440 (64 B)
var: .hash (external,) @@ 0x4002b0 (36 B)
func: .init () (external,prototyped,) @@ 0x400420 (26 B)
func: .text () (external,prototyped,) @@ 0x400480 (420 B)
func: _init () (external,prototyped,) @@ 0x400420 (26 B)
var: .init_array (external,) @@ 0x600e00 (8 B)
var: .dynstr (external,) @@ 0x400358 (61 B)
func: puts@plt () (external,prototyped,) @@ 0x400450 (16 B)
var: .got.plt (external,) Q@@ 0x601000 (48 B)
var: __init_array_end @@ 0x600e08 (8 B)
var: .eh_frame (external,) @@ 0x400678 (212 B)
var: _I0_stdin_used (external,) @@ 0x400630 (4 B)
var: .dynamic (external,) @@ 0x600e18 (480 B)
func: __libc_csu_fini () (external,prototyped,) @@ 0x400620 (2 B)
var: .jcr (external,) @@ 0x600e10 (8 B)
var: _DYNAMIC @@ 0x600e18 (480 B)
var: .interp (external,) @@ 0x400270 (28 B)
func: __libc_csu_init () (external,prototyped,) @@ 0x400590 (137 B)
var: .rodata (extermal,) @@ 0x400630 (18 B)
func: __libc_start_main@plt () (external,prototyped,) @@ 0x400460 (16 B)

var: __dso_handle (extermal,) @@ 0x601038 (8 B)
var: __init_array_start @@ 0x600e00 (8 B)

var: data_start (external,) @@ 0x601030 (8 B)
var: __bss_start (external,) @@ 0x601040 (8 B)

var: .note.ABI-tag (external,) @@ 0x40028c (32 B)

var: .eh_frame_hdr (external,) @@ 0x400644 (52 B)

var: .fini_array (external,) @@ 0x600e08 (8 B)

var: .rela.dyn (external,) @@ 0x4003cO (24 B)

func: _start () (external,prototyped,) @@ 0x400480 (236 B)
var: .gnu.version_r (external,) Q@@ 0x4003a0 (32 B)

var: __data_start (external,) @@ 0x601030 (8 B)

var: _edata (external,) @@ 0x601040 (8 B)

3.8. STACKDB TOOLS 39

var: .gnu.hash (external,) @@ 0x4002d8 (28 B)

func: main () (external,prototyped,) @@ 0x40056c (32 B)

var: .dynsym (external,) @@ 0x4002f8 (96 B)

var: .gnu.version (external,) @@ 0x400396 (8 B)

func: _header@plt () (external,prototyped,) @@ 0x400440 (16 B)
var: .data (external,) @@ 0x601030 (16 B)

—

binfile root ranges:
0x400270,0x40028c: .interp
0x40028c,0x4002ac: .note.ABI-tag
0x4002b0,0x4002d4: .hash
0x4002d8,0x4002f4: .gnu.hash
0x4002£8,0x400358: .dynsym
0x400358,0x400395: .dynstr
0x400396,0x40039%e: .gnu.version
0x4003a0,0x4003c0: .gnu.version_r
0x4003c0,0x4003d8: .rela.dyn
0x4003d8,0x400420: .rela.plt
0x400420,0x40043a: _init
0x400420,0x40043a: .init
0x400440,0x400480: .plt
0x400440,0x400450: _header@plt
0x400450,0x400460: puts@plt
0x400460,0x400470: __libc_start_main@plt
0x400470,0x400480: __gmon_start__0plt
0x400480,0x40056¢c: _start
0x400480,0x400624: .text
0x40056¢,0x40058c: main
0x400590,0x400619: __1libc_csu_init
0x400620,0x400622: __libc_csu_fini
0x400624,0x40062d: _fini
0x400624,0x40062d: .fini
0x400630,0x400634: _I0_stdin_used
0x400630,0x400642: .rodata
0x400644,0x400678: .eh_frame_hdr
0x400678,0x40074c: .eh_frame
0x600e00,0x600e08: __init_array_start
0x600e00,0x600e08: .init_array
0x600e08,0x600e10: __init_array_end
0x600e08,0x600e10: .fini_array
0x600e10,0x600e18: .jcr
0x600e18,0x600££8: _DYNAMIC
0x600e18,0x600££8: .dynamic

40 CHAPTER 3. USING STACKDB

0x600££8,0x601000: .got
0x601000,0x601030: _GLOBAL_OFFSET_TABLE_
0x601000,0x601030: .got.plt
0x601030,0x601038: data_start
0x601030,0x601038: __data_start
0x601030,0x601040: .data
0x601038,0x601040: __dso_handle
0x601040,0x601048: _edata
0x601040,0x601048: __bss_start
0x601040,0x601048: __TMC_END__
0x601040,0x601048: .bss
0x601048,0x601048: _end

binfile_pointing root: (tab=0,anon=0,dup=0)

3.8.2 dumptarget

The dumptarget program is the original “test” program we evolved as we
developed Stackdb. We don’t recommend using it, but it can be a useful tool to
place probes on functions, addresses, sourcefile/lines, and variables — using the
“old” target_monitor () style (a single, blocking event loop — probetargets, for
instance, uses target_monitor_evloop() to be able to monitor multiple targets
at once). Basic usage would look like

$ dumptarget -t gdb --qemu --kvm --gdb-host 127.0.0.1 --gdb-port 1234 \
--gemu-libvirt-domain vml --gemu-mem-path /hugetlbfs/libvirt/qemu/qemu_back_mem.pc
-M /tftpboot/roots/centosb5.5-x86_64/boot/vmlinux-syms-2.6.18-308.el5 \
--overlay 'bash:-t os-process -s -R /tftpboot/roots/centos5.5-x86_64"
sys_open make_child

to place probes on sys_open in the Linux kernel in the base target, and on
make_child in the bash process the overlay target is attached to.

3.8.3 probetargets

The probetargets program is a modern, less-complicated version of dumptarget
but it only accepts symbols to place probes on. However, you can also prefix
each symbol with the ID of a target. So, you could run the command above like
this:

$ probetargets \
--base '-t gdb -i 10 --gemu --kvm --gdb-host 127.0.0.1 --gdb-port 1234 \
--gemu-libvirt-domain vml \
--gemu-mem-path /hugetlbfs/libvirt/qemu/qemu_back_mem.pc.ram.* \
-M /tftpboot/roots/centos5.5-x86_64/boot/vmlinux-syms-2.6.18-308.el5"' \
--overlay '10:bash:-t os-process -i 20 -s -R /tftpboot/roots/centos5.5-x86_64"

3.9. EXAMPLES AND DEMOS 41

10:sys_open 20:make_child

because you want to place the sys_open probe on target id 10, and the
make_child probe on target id 20.

3.8.4 dumpthreads

dumpthreads can dump (detailed) information about each thread in a target,
and it can loop and dump threads at a given interval.

3.8.5 backtrace

backtrace can dump backtraces for target threads.

3.8.6 spf
spf is a generic, multi-target, multi-stack debugger with a very simple configura-

tion file interface. See tools/spf/README. spf in the source tree for a detailed
manual.

3.8.7 syscall

[TDB. |

3.8.8 cfi_ check

[TDB. |

3.8.9 rop__checkret

[TDB. |

3.9 Examples and Demos

Before you begin writing Stackdb programs yourself, you'll want to get something
working first. Besides, some Stackdb tools may be generally useful to you. This
section provides some quick examples of using some of Stackdb’s tools so you
quickly use its core functionality. When you start building your own tools, these
may provide helpful insights.

42 CHAPTER 3. USING STACKDB

3.9.1 Preparing Your System

If you want to run any of the Xen or QEMU/KVM demos, please make sure
you’ve built Stackdb with the required support, and have installed Xen and/or
QEMU. Furthermore, please download the (large) tarball at http://www.flux.
utah.edu/software/stackdb/downloads/centos5.5-x86_ 64.tar.gz (about 275MB,
currently). Create a directory on your machine, and extract the tarball into it:

$ tar -xzv --strip-components=1 \
-f vm-2.6.18-files.tar.gz -C /path/to/your/directory

This directory contains a 2.6.18 kernel; two initramfs images; and debuginfo files
for nearly all the binaries in the initramfs. You’ll be able to use this directory in
the Xen and/or QEMU/KVM examples. The only user with a passwd is root;
the passwd is also root.

3.9.2 KVM demos

First, let’s do something simple. Get your system prepared to run KVM VMs
in the manner required by Stackdb, as described above. Then start up a KVM
VM:

$ sudo QEMU_MEMPATH_PREFIX=/hugetlbfs/qemu \
LD_PRELOAD=/home/johnsond/g/a3/vmi.obj.tap.current/target/.libs/libgemuhacks.so
gemu-system-x86_64 -cpu host -m 512 -enable-kvm \
-kernel /tftpboot/roots/centos5.5-x86_64/boot/vmlinuz-2.6.18-308.el5 \
-initrd /tftpboot/roots/centosb.5-x86_64/boot/initrd-2.6.18-308-full.elb.img \
-append console=ttySO -nographic \
-device e1000,netdev=net0 -netdev tap,id=net0 \
-gdb tcp:127.0.0.1:1234,nowait,nodelay,server \
-qmp tcp:127.0.0.1:1235,server,nowait -mem-path /hugetlbfs

This will give you a VM with the console attached to your terminal’s stdio, and
an 1000 network adapter (if you want your device connected to anything, make
sure to read http://www.linux-kvm.org/page/Networking).

(Note that you'll need to set the LD_PRELOAD path to libgemuhacks.s0.0.0.0
to point to your build tree, not mine! Also change the -kernel and -
initrd arguments to point to wherever you unpacked the tarball, not
/tftpboot/roots/centosb.5-x86_64.)

(Note also that if you are attaching to a QEMU VM that is managed by 1libvirt,
or a cloud platform such as OpenStack or Eucalyptus, you'll want to read the
[GDB/QEMU/KVM driver notes].)

Once it’s booted, login with user root, passwd root.

Second, make sure you've installed Stackdb. Then, run the dumptarget program
in another terminal like this:

http://www.flux.utah.edu/software/stackdb/downloads/centos5.5-x86_64.tar.gz
http://www.flux.utah.edu/software/stackdb/downloads/centos5.5-x86_64.tar.gz
http://www.linux-kvm.org/page/Networking

3.9. EXAMPLES AND DEMOS 43

$ sudo dumptarget -t gdb \
--gdb-port 1234 --gemu --gemu-qmp-port 1235 --kvm \

-M /tftpboot/roots/centosb.5-x86_64/boot/vmlinux-syms-2.6.18-308.el5 \

--gemu-mem-path /hugetlbfs/qemu_back_mem.pc.ram.XXXXXX \
--personality linux -s sys_open

(and replace XXXXXX with the path to your QEMU process’s RAM file on the
hugetlbfs mountpoint; this will change each time you run your QEMU VM!).

Finally, go back to the VM’s console, and type 1s. In the terminal you started
dumptarget in, you should see output like

bsymbol (region(main:/tftpboot/roots/centos5.5-x86_64/boot/vmlinux-syms-2.6.18-308.el5))

lsymbol:

func: long int sys_open (const char* filename (line=1179,) @@ LIST([Oxffffffff80031312,0xfff{

Starting main debugging loop!

sys_open (Oxffffffff80031312) (thread 616) mode = 1 (0x01000000), filename
sys_open (Oxffffffff80031312) (thread 616) mode = -976703488 (0x00b0c8c5),
sys_open (Oxffffffff80031312) (thread 616) mode = -976703488 (0x00b0c8c5),
sys_open (Oxffffffff80031312) (thread 616) mode = -976703488 (0x00b0Oc8c5),
sys_open (Oxffffffff80031312) (thread 616) mode = -976703488 (0x00b0Oc8c5),
sys_open (Oxffffffff80031312) (thread 616) mode = -976699152 (0xf0c0c8c5),
sys_open (Oxffffffff80031312) (thread 616) mode = -976697928 (0xb8c5c8ch),
sys_open (Oxffffffff80031312) (thread 616) mode = -976696704 (0x80cac8ch),
sys_open (Oxffffffff80031312) (thread 616) mode = -976696704 (0x80cac8ch),

= "/etc/1d.

filename
filename
filename
filename
filename
filename
filename
filename

so.cache" |
"/1ib64/1ik
"/1ib64/1it
"/1ib64/1ik
"/1ib64/1it
"/1ib64/1il
"/1ib64/1it
"/1ib64/1ik
"/1ib64/1it

sys_open (Oxffffffff80031312) (thread 616) mode = 438 (0xb6010000), filename = "/proc/mounts" (O:
= "/selinux/mls" (0x2{

sys_open (Oxffffffff80031312) (thread 616) mode
sys_open (Oxffffffff80031312) (thread 616) mode

You can see dumptarget successfully found the sys_open symbol, and placed a
probe on it, and resumed the VM.

Then, once I typed 1s on the VM'’s serial console, many sys_open system calls
occurred. You can see which ones yourself by looking at the output above.

Try changing sys_ open to another function you’re interested in.

3.9.3 Ptrace demos

An easy to way to see the Ptrace backend in action is to simply start up a couple
of the test programs that come with Stackdb. These programs don’t get built
unless you specified --enable-tests to configure. However, if you return to
the Stackdb build directory, and type make -C tests, several test programs will
build (don’t worry if the build ends in a failure—the programs you want, dummy
and dummy . threads should still be there). These programs simply loop while
updating some counter variables via a tail-call stack of functions (£1 to £10) and
sleep for a few seconds. dummy does this with a single thread; dummy.threads
does this with two threads.

0 (0x00000000), filename
1 (0x01000000), filename = "." (0x2e00), flags

44 CHAPTER 3. USING STACKDB

First, in one terminal, fire of dummy. Then, in another terminal, run some of the
Stackdb tools against it:

$ sudo ./backtrace -p “pgrep -n dummy’

(Recall, pgrep looks for a process ID whose name matches the argument supplied.)
You should see output like this:

Initial threads in target 'ptrace(21424)':
tid(21424) : tid=21424,name=(null) ,curctxt=0,ptid=-1,uid=-1,gid=-1,
ip=7£19264a3920,bp=ffffffff,sp=7ff£37896ba8,flags=246,ax=fffffffffffffdfc,
bx=7f££37896bcO,cx=ffffffffffffffff dx=0,di=7£££37896bb0,si=7£f£37896bbO,
cs=33,ss=2b,ds=0,es=0,fs=0,gs=0
tid(21424): tid=21424,name=(null),curctxt=0,ptid=-1,uid=-1,gid=-1,
ip=7£19264a3920,bp=ffffffff,sp=7ff£37896ba8,flags=246,ax=fffffffffffffdfc,
bx=7f££37896bcO,cx=ffffffffffffffff dx=0,di=7£££37896bb0,si=7£f£37896bbO,
cs=33,ss=2b,ds=0,es=0,fs=0,gs=0
thread 21424:
#0 0x00007£19264a3920 in ../sysdeps/unix/syscall-template.S ()
at ../sysdeps/unix/syscall-template.S:81
#1 0x00007£19264a37el in __sleep (seconds=0)
at ../nptl/sysdeps/unix/sysv/linux/sleep.c:-1
#2 0x0000000000400d47 in looper (istart=7)
at ../../vmi.tap.current/tests/dummy.c:207
#3 0x00000000004008f0 in main (argc=40,argv=7)
at ../../vmi.tap.current/tests/dummy.c:255
#4 0x00007£192640adb5 in __libc_start_main (main=0x400830,argc=4,
argv="./dummy",init=7,fini=7,rtld_fini=?7,stack_end=0x7fff37896ea8)
at libc-start.c:319
#5 0x0000000000400925 in _start () at /proc/21424/exe:-1
ptrace(21424) finished.

If you run dummy.threads and run backtrace against that (i.e., sudo
./backtrace -ppgrep -n dummy.threads®), you'll see two thread backtraces.

3.10 Writing Stackdb Programs in C

The way to think about developing a program using Stackdb is that you're
scripting a debugger-like (or memory forensics) interaction with a target program
running on the same host, or on another host. You want to investigate it, either
by passively reading its memory, or by actively installing breakpoints and
watchpoints, and reacting to its control flows. Sometimes you might even alter
memory content or change control flow by modifying CPU registers or the stack.
Usually, after inserting some probes, you let the target program continue running,
and “handle” the events when your target program hits the probes (perhaps you
do some kind of analysis, or wait for a specific kind of state to be reached).

3.10. WRITING STACKDB PROGRAMS IN C 45

3.10.1 Library Overview

In a Stackdb program, the target program being debugged is accessed through
a target “object,” as illustrated in the Stackdb architecture diagram. A target
object corresponds to a particular level of abstraction or a portion of the whole
system being debugged; and it provides access to the target program and creates
and maintains a model of it (i.e., tracks its threads, its address spaces, etc).
By invoking target API functions, which are common to all targets, you can
install breakpoints (“probes” in Stackdb terminology), examine software state
and symbols, single-step, and potentially modify execution at the level of a
particular target.

The Stackdb architecture diagram also shows that each target is paired with
a driver, whose purpose is to implement debugger-like inspection and control
features for a particular software abstraction: e.g., kernel, process, or language
runtime. Although all drivers implement a common driver API, we distinguish
two primary classes of implementation. A base driver interacts directly with the
system being debugged, e.g., via a hypervisor-provided interface or ptrace(2).
An overlay driver interacts with the system through another target, i.e., by “stack-
ing on top of an appropriate underlying target. The overlay driver communicates
with the underlying target through the target API.

Because the target API is “implemented” by every target, a user can easily
instantiate multi-level stacks of targets. In addition, the ability to implement
drivers in terms of underlying targets greatly eases the process of developing
new drivers, e.g., for new language runtimes. Finally, the target API makes
it possible to implement generic analyses and utilities that can be applied to
multiple levels of a software stack.

3.10.2 Integrating Stackdb Into Your Program: “Run-
ning” Stackdb

When you write a Stackdb program, you might want to insert some probes, wait
until they are hit, and then analyze the target program’s state, and/or modify
its execution. In this mode, your program will be a simple event loop — you call
a Stackdb function that “runs” your target program (target_monitor()) and
calls your probe handlers when their corresponding probes are hit — Stackdb
does the “dirty work” behind the scenes to implement breakpoints, safely read
and write target memory and CPU registers, etc. Your handlers do all the work
while the target program is paused. This is a simple, synchronous, event-driven
model for writing Stackdb programs. Currently, only the base drivers need
to be “run” — but the API supports runnable overlay drivers as well, if you
need to develop some strange hybrid overlay driver that both receives exception
notifications from its underlying base target, and from some external source
(very unlikely).

arch.svg
arch.svg

46 CHAPTER 3. USING STACKDB

If you are integrating Stackdb with another program that must do other tasks in
addition to handling debug exceptions, you’ll need to choose between a couple
different styles. (You’'ll also need to handle signals in your Stackdb program; if
your program is signaled with a fatal signal, and you haven’t specified a handler
for the signal, your Stackdb program will exit before the Stackdb library can
remove probes on the target! This likely will crash the target program next time
it hits a breakpoint. See the section on signal handling below; Stackdb can help.)

First, you can use one of the Stackdb monitoring/polling mechanisms below to
create your own event loop that can monitor one or more targets. If you have an
existing event loop and don’t want to poll, you can minimize polling overhead
by adding Stackdb targets to your own event loop construct (which probably
involves a select () loop — you might already have one, or might have to create
one — Stackdb provides its own event loop abstraction around select () that
you can borrow if you like). Most Stackdb drivers are able to proxy debug
exceptions over a file descriptor — in other words, they write a single byte to a
file descriptor when the target has a debug exception that needs to be handled —
and that file descriptor can then be added to a select() loop. When the file
descriptor is ready to read, then you should call the target_poll() function to
handle the pending debug exception. Third, you can either divide your program
into multiple threads or multiple processes; and dedicate a single thread or
process to call target_monitor (). In this case, you’ll need to use appropriate
synchronization mechanisms to coordinate your threads’ interoperation. Stackdb
is not thread-safe — it does not have built-in support for a threading APT like
pthreads(2) — and it is never safe to apply the Target API to a single target
from different threads at the same time. If you need to do this, you’ll need to
protect such accesses with a mutex of some kind!

Finally, you might want to analyze the target’s memory asynchronously, without
pausing the target (except when you attach or detach from it). In Stackdb,
you can access memory asynchronously (without pausing the target program),
but you must pause it to read or write its CPU state. Thus, in this mode, you
might never pause or unpause the target — and never call target_monitor ()
nor target_poll().

3.10.2.1 Monitoring One Target: target_monitor ()

If you only need to monitor a single target object, and don’t already have an
existing program or event loop, you can use target_monitor().

3.10.2.2 Monitoring Multiple Targets: target_monitor_evloop()

If you need to monitor multiple base target objects, you’ll want to use
target_monitor_evloop() (unless you have written a new base driver that
doesn’t support evloops!). This function uses Stackdb’s evloops, and if you

3.10. WRITING STACKDB PROGRAMS IN C 47

have existing file descriptor-based sources of events in a program you’re adding
Stackdb to, you may be able to replace your existing event loop with Stackdb’s
evloop.

(If you use Stackdb’s evloops, be aware that some drivers may use the waitpipe
data structure to turn signals into file descriptor I/O that may be detected via a
select() loop; so don’t install your own SIGCHLD handler!)

3.10.2.3 Monitoring Multiple Targets (polling): target_poll()

If your application is best-suited to a polling style of handling Stackdb targets,
you can use Stackdb’s target_poll() function to check for (and handle) debug
exceptions, and regularly poll in a coordinated manner with your program’s
other tasks. With polling, you can avoid blocking your program’s main thread
of control, or block for finite amounts of time.

3.10.2.4 Manually Handling One or More Targets: evloop_run()

(This section is not for the faint-of-heart; it will cause your code to become more
complex; make sure your use case really demands this power.)

The struct evloop object is essentially a powerful wrapper around a select()
loop. It provides a loop monitor that monitors a set of file descriptors with
select(), and triggers callback functions associated with those descriptors when
they are available for I/O. Thus, any target type whose debug exceptions can
be represented by file I/O can be monitored by an evloop. All current built-in
Stackdb drivers support evloops.

To use this run mechanism, call evloop_create() to obtain an evloop. Then,
pass that evloop to each target instantiate®() call you make; your new tar-
get will be attached to the evloop. Finally, call evloop_run() to run the
loop. Read the evloop API documentation for more details, or take a look at
examples/multi-target-evloop.c.

(If you use evloops, be aware that some drivers may use the waitpipe data
structure to turn signals into file descriptor I1/0O that may be detected via a
select() loop; so don’t install your own SIGCHLD handler!)

3.10.2.5 Signals

Unfortunately, since Stackdb handles significant I/O on your behalf, and responds
to asynchronous events like signals — you must carefully deal with signals.

Never send a fatal signal to a Stackdb program. For instance, when using GDB,
if you have installed a software breakpoint in a program; then kill GDB with
signal 9 or 15; then trigger the breakpoint to be hit in the target program —

48 CHAPTER 3. USING STACKDB

the program will die with an unhandled debug trap. The same is true is of
Stackdb. If you signal a debugger program with a signal number it doesn’t (or
can’t) catch, any modifications that it made to its target will persist and very
likely cause trouble!

Stackdb provides much built-in help to appropriately handle signals on your
behalf. Tts default signal handler (see target install default_sighandler();
target_ default_ sighandler() is the actual handler function) catches SIGHUP,
SIGINT, SIGQUIT, SIGABRT, SIGFPE, SIGSEGV, SIGPIPE, SIGALRM, SIGTERM. Only
SIGINT is nonfatal (it will cause whatever target_monitor*() function that
is running the loop to return with an interrupt condition), so you can do
some asynchronous work, like handling user input. The other signals cause an
immediate target_ pause(), target_ close(), and target_ finalize() to be applied
to each existing target.

However, Stackdb does not provide a general signal-handling and -dispatch
infrastructure. Odds are that if you need such support, you’ll want to design
your own signal handling mechanisms, and manually clean up all Stackdb targets
(i.e., close and finalize) as necessary.

There’s one other important note about Stackdb’s signal usage. Some Stackdb
drivers make use of the internal waitpipe object, which turns a SIGCHLD into
a write on a pipe file descriptor (so that a select loop can be notified — this
is how we turn all debug exception notifications into file descriptor events). If
you need to handle SIGCHLD signals yourself, make sure to provide your own
handler to waitpipe_init_ext (). If this mechanism isn’t sufficient (i.e., you
need fine-grained control over the sigaction() mask or flags), let us know.

3.10.2.6 Forking

Stackdb does not support use of fork() at the moment. If you must embed Stackdb
in a multi-process architecture, do not call fork() once you’ve instantiated Stackdb
targets within a process.

3.10.3 Targets

[TBD. |

3.10.3.1 CPU State: Threads and Registers

[TBD. |

3.11. OVERLAY TARGETS 49

3.10.3.2 Memory: Address Spaces, Regions, Ranges

[TBD. |

3.11 Overlay Targets

[TBD. |

3.11.1 Examples

Let’s walk through some examples. The full source code for each of these
programs can be found in the source tree in the examples/ subdirectory.

3.11.1.1 Example 1: Placing a Breakpoint in a Userspace Process

Let’s start simply

3.11.1.2 Example 3: Finding Unique Control Flows in the Linux
Kernel

Suppose we want to write a program that allows us to find unique control flows
at known, interesting functions within another program. For instance, maybe
we want to figure out who calls the ip_rcv function in the Linux kernel. Even
though ip_rcv is only called through a function pointer table in the kernel’s IP
subsystem, we could probably figure this out through some static analysis—but
this is more fun!

Our strategy will be to set a breakpoint on the ip_rcv function; generate a
backtrace as a string; and hash it into a hashtable that maintains a count.
However, the Stackdb backtrace string-ifier is fairly powerful, and the backtraces
we get will probably be fairly unique, due to function call arguments. So we’ll
actually generate the backtrace once, and stringify it twice — once without any
function arguments; and once with them.

First, we’ll start by including the primary header files we need:

#include "common.h"
#include "target_api.h"
#include <glib.h>

common . h contains some basic types, such as the arch-independent ADDR numeric
type. target_api.h contains the user-available functions that allow you to
debug and analyze targets. We’ll use glib for hashtable functionality.

50 CHAPTER 3. USING STACKDB

Next, we’ll write a simple main that looks up a symbol and places a probe (a
breakpoint or watchpoint) on it. We’ll also write a simple callback function
to handle the probe event; the Stackdb library notifies your program on probe
exceptions via callbacks. Stackdb handles the work of pausing and unpausing
the target program for you, and manages its execution for you—so all you have
to know is that the target is stopped whenever your callbacks are called.

GHashTable *ht;
int main(int arg,char **argv) {

struct target *t;
struct bsymbol *myfunc;

/* Initialize the core Stackdb globals */
target_init();
atexit(target_fini));

/* Create a string hashtable */
ht = g_hash_table_new_full(g_str_hash,g_str_equal,NULL,free);

/* Parse the command-line arguments */
tspec = target_argp_driver_parse(NULL,NULL,argc,argv,
TARGET TYPE_ALL_BASE,1);
if ('tspec) {
fprintf (STDERR, "ERROR: could not parse target arguments!\n");
exit(-1);
}

/* Instantiate a target */
Now, let’s make it possible to pass a list of functions on the command line, all
of which we probe for unique execution paths:

Now let’s add an option to disable certain threads based on name:

[TBD...]

3.11.2 C API

Refer to the online Stackdb C API.

3.12 Writing Stackdb Programs in Python

We haven’t yet built this binding, but may do so.

api.html

Chapter 4

Extending Stackdb

Hopefully, you’ll have arrived at this section because you want to extend Stackdb’s
platform support. If you hoped to get advice on how to improve its design,
unfortunately this won’t be much help to you.

4.1 Code Structure

Here’s a quick overview of the source tree:

include/ — common Stackdb header files: data structures, architecture
support, utility functions and structures

lib/ — implementations of the header files in include/

dwdebug/ — DWARF debuginfo and ELF support for reading binary files,
and extracting and indexing debugging data, including symbols, types,
addresses/locations, source file/line information, stack-unwinding data, etc;
provides fast lookups and optimized file loading and indexing; supports
C/C++ (and its data structures suffice to describe the core of languages
like Python, PERL, PHP, and the like — but some constructs of higher-level
languages might be harder to “fit” into the dwdebug abstractions, since
they were designed with C language features in mind.

target/ — the core of Stackdb: the target abstraction and its common
code (targets, threads, addrspaces, regions, ranges, bsymbols, etc); drivers;
personalities

analysis/ — supports Stackdb analyses (at one point, we envisioned Stackdb-
based programs and libraries as analyses; this is first-class support for the
metadata that describes those programs)

xml/schema/ — XML schema describing debuginfo and target data struc-
tures

51

52 CHAPTER 4. EXTENDING STACKDB

o xml/service/ — WSDL and SOAP web services; exports three categories of
Stackdb functions (dwdebug; target; and analysis) as web services

o xml/client/ — SOAP client support; Apache Axis 2.x-based Java client libs
and example programs; Python sample clients.

 tools/ — several basic tools, written using Stackdb, that can be applied to
any target (i.e., dumpdebuginfo, backtrace, dumptarget, dumpthreads, spf,
cfi_ check, rop_ checkret)

4.2 Target Lifecycle

4.3 Overlay Targets

4.4 Symbols

Probably what you’re curious about is, why are there three different data struc-
tures describing symbols? struct symbol and struct lsymbol in dwdebug/,
and struct bsymbol in target/. First, we desired to provide first-class support
for looking up symbol expressions, not just individual symbols. It’s much easier
for the user to look up an expression like “init_ task.mm.mm_ count”, instead of
the individual members and/or typed pointers that make up the chain — and
given this chain (an Isymbol), the user can ask the to lookup a bsymbol (a
“bound” symbol — bound to a target region, because the debugfile in which the
symbol was found is associated with a specific memory region) — and then to
load it. In other words, the target library can load symbol expressions, not just
individual symbols. This is quite convenient.

Unfortunately, it complicates the API. The target API (bsymbols) essentially
wraps the dwdebug APT (symbols and lsymbols) functions.

Finally, symbols are reference counted. This is necessary because of optimizations
in the dwdebug/ library that strive to remove duplicate debuginfo data (there
can be a lot of it!). Users are never exposed to symbols that might be deleted;
the reference counting is primarily used to guard symbols while the loading
algorithms are running and conducting space-saving optimizations.

This means when users lookup a symbol, they must release it via bsym-
bol_release(), Isymbol_release(), or symbol_release(). Unfortunate, but that’s
how it has to be to enable the optimizations.

4.5. CURRENT DRIVERS

4.5 Current Drivers
4.6 Writing a Driver

4.7 Writing a Personality

53

	Stackdb: A C Library for Stackable Debugging and Virtual Machine Introspection
	Supported Platforms
	Obtaining the Software
	Additional Documentation
	Authors

	Installing Stackdb
	Dependencies
	Optional Packages

	Notes on Building Dependencies
	Building and Installing Stackdb

	Using Stackdb
	Quick Start
	Understanding the Concept and Features
	How to Run Stackdb Programs
	Standard Stackdb Program Arguments
	Specifying Multiple Targets
	Improving Debuginfo Loading Times
	Debuginfo Search Path
	Active Probing
	Standard Debugging Arguments

	Supported Platforms
	Drivers
	Linux Userspace Process (Ptrace) Driver
	Xen Driver
	GDB/QEMU/KVM Driver
	QEMU GDB Helper
	QEMU/KVM Configuration
	Manually Running QEMU/KVM
	Using Libvirt to Run QEMU/KVM
	Using Eucalyptus to Run QEMU/KVM
	Using OpenStack to Run QEMU/KVM

	OS Process Driver
	PHP Driver
	Personalities
	Generic Linux OS Personality

	Supported Configurations
	Working with Debuginfo
	Installing Debuginfo Packages on Ubuntu Systems
	Installing Debuginfo Packages on Fedora/CentOS Systems

	Stackdb Tools
	dumpdebuginfo
	dumptarget
	probetargets
	dumpthreads
	backtrace
	spf
	syscall
	cfi_check
	rop_checkret

	Examples and Demos
	Preparing Your System
	KVM demos
	Ptrace demos

	Writing Stackdb Programs in C
	Library Overview
	Integrating Stackdb Into Your Program: Running Stackdb
	Monitoring One Target: target_monitor()
	Monitoring Multiple Targets: target_monitor_evloop()
	Monitoring Multiple Targets (polling): target_poll()
	Manually Handling One or More Targets: evloop_run()
	Signals
	Forking

	Targets
	CPU State: Threads and Registers
	Memory: Address Spaces, Regions, Ranges

	Overlay Targets
	Examples
	Example 1: Placing a Breakpoint in a Userspace Process
	Example 3: Finding Unique Control Flows in the Linux Kernel

	C API

	Writing Stackdb Programs in Python

	Extending Stackdb
	Code Structure
	Target Lifecycle
	Overlay Targets
	Symbols
	Current Drivers
	Writing a Driver
	Writing a Personality

